physics, can give rise to interesting nonlocal effects even
observable experimentally, and this is due to the geometri-
cal nature of GR and has nothing to do with the particular
form of the field equations of gravitation considered.
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The addition theorem for spherical harmonics is includ-
ed in many graduate-level texts on mathematical physics,
electromagnetism, and quantum mechanics. The theorem
says that

P/(nyn,y) = z Y$, ()Y, (n). (n

m= —1
Here, | = 0,1,2,..., and n, and n, are arbitrary unit vectors
whose angular coordinates are (8,,¢,) and (6,,4,) so that

n, =sin &, cos ¢,i + sin G, sin ¢,j + cos 6,k

(r=12). (2)
Also" Ylm (Ql’¢l ) = Ylm (nl ) = Ylm ’ a'nd Ylm (62’¢2)
=Y, (n,)=Y,,. Theangle between the two unit vectors is
denoted by ¥ so that n,sn, = cos 7.

Let (81,47) and (8,4} ) be the angular coordinates of
the vectors above with respect to a rotated coordinate sys-
tem where we now call the vectors n| and n;. Then
n -n2 = ¢0s ¥ = nj*nj so that (1) implies that

z Ylm (0l!¢ ) Im' (62’¢2)

m = —1
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m= —1

I

One may recover (1) from (3) so that (1) and (3) are two
equivalent formulations of the addition theorem.

The most frequently found proofs of the addition
theorem may be roughly grouped in the three categories
below:

(a) Proofs where the addition theorem is a by-product of
some specialized formalism such as the theory of angular
momentum, group theory, and Green functions. An exam-
ple of such a proof is the one by Rose.! These proofs are
often very elegant. Their only drawback is the extensive
background required.

(b) Mathematically oriented proofs. The complex-vari-
able proofs of the addition theorem (stated in terms of Le-
gendre polynomials and associated Legendre functions)
due to Whittaker and Watson? and Copson® belong to this
category. A related proof is found in Margenau and Mur-
phy.* These proofs are rather complicated and lengthy but
are often quoted in physics texts.>’

(c) Proofs that use
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i

Yo (08) = > Coup Vi (6',8") (4)

m o= —
[or the special case of (4) where m = 0] as a stepping stone
to prove (1) and that (in most versions of the proof) base
(4) on the properties of a differential equation. Here, (6,4)
and (0',¢") are the angular coordinates of a vector with
respect to two rectangular coordinate systems that are ro-
tated with respect to each other. The ¢,,,, are constants
that depend on the orientation of the coordinate systems
with respect to each other and on /, m, and m’. This type of
proof is widely used®'' and has a number of attractive
features (e.g., it does not require much background on
spherical harmonics). However, it is fairly sophisticated
and some of the technical details are subtle so that the
learner may spend an appreciable time crossing all its t’s

and dotting all its i’s.

Our aim in this note is to present a proof of the addition
theorem that is mathematically rigorous but uses simpler
mathematics than the proofs above. We prove (1) using
induction. The induction procedure is based on some well-
known rectursion relations for Legendre polynomials and
spherical harmonics [Egs. (7) and (15) ]. We do not prove
the recursion relations, and we also assume as known Eq.
(11) for spherical harmonics and the explicit form for the
first few Legendre polynomials and spherical harmonics.
Apart from this the proof is self-contained.

To start the induction argument we note that for / =0
Eq. (1) reduces to the identity 1 = 1."2

For / = 1 the left-hand side of (1) is cos ¥ = n,*n, which
by (2) can be expressed in the form'?

cos ¥ = cos 6, cos 8, + sin &, sin 6, cos($, — ¢,)
=a+b+c=47/3)(YX 7Y,
+YHY,, +YE TV, ), (5)
where
a=}[exp( — i¢,)sin 6,] [exp(i¢,)sin 6,], (6a)
b=cos 8,cos 8,=>b*%, (6b)

and
c=ilexp(ig,)sin 6,][exp( — ip,)sin 6,] = a*.  (6¢)

! - I
cos 7/ z Yﬁn Ylm = 2 (Am + Bm + Cm)

{ m= —1

Having proved (1) for / =0 and 1 we suppose that it is
true for / — 1 and /, where /= 1,2,3,..., and we want to
show that it holds for/ + 1. Accordingly, we can insert (1)
on the left-hand side of the recursion relation

—IP,_(cos¥) + (2] + 1)cos yP,(cos y)

=+ DP, (cosy), (I=12,..) @)
so that after a division by 4+ this equation takes the form
l -1 -
— Y¥* .Y _ . +cos
21 m:21+l HEREE SN Y
{
£ (l+1))
X Y":,,Y,,,:( P, (cosy). 8)
m:zﬁ‘[ m L @ 141 Y (
We will prove shortly that
l 1—1 -
- Y?‘—lmylflm
2—1 e ' '
] P
+cosy > YiY,
m= —1
l+1 1+1 -
= Y P Yo, (=120, (9
21+3m:;71 TormYiiim ). (9)

Equating the right-hand side of (8) and the right-hand side
of (9) completes the induction proof.

We now turn to the proof of (9). We first introduce the
notation

Am EaYﬁn ?Im’ Bm EbY?:nAYIm’ Cm ECY;':"?/W,
(m= —1..1), (10a)
where a, b, and ¢ are defined by (6). By (6b) and (6c)

szbyffmﬂyl,fmz‘B»—m (IOb)
and '
Ch=aYr Y, _,=4_,, (10c)

where we also used
Y (0,8)=(—1"YF_, (0.4)
(1=012,.; m= —1..,D). (11)

If one inserts (5) into the second term on the left-hand
side of (9) and uses the notation (10a), then this term can
be expressed in the form

=A1+ [Al—l +BI] + [(A/,,z ‘|'B/771 +C1)+(A1~3 +B/72 +C171)+---
+A_,+B_,,, +C,/+z)] + [B7/+C7/+1] +C

1

=A,+[4,  +8/]+ Z

n= —1/+1

F[Br+AT ] +4%,

where we used (10b) and (10c¢) in the last step.
We will prove shortly that

Am4| +Bm +Cm+1
=[U+D/QI+ Y 0¥ im
+1/QI=DIYE LY,

m= —1+1,., [-1), (13a)
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(I=123,..),

‘ (Amfl +Bm +Cm+1)

(12)

r

A, +B=[U+1/QI+3)1Y% Y, ., (13b)

and
A =[U+1)/QI+31Y* o Y (13c)
By (11) it follows from (13b)_and (13¢) that
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A* (+B*=[U+1)/QI+3)]IY¥ . ¥,
(14a)

and
}"= [(l+ 1)/(2l+ 3)]Yr+1,_1_13}[+1’_1_1.
(14b)

Substituting (13) and (14) into the right-hand side of
(12) and then substituting (12) into the left-hand side of
(9) proves (9). This completes the induction proof except
that we still have to prove (13).

To do this we use the recursion relations

cos 0Y,, (6,4)
=[(U-m+1D{U+m+1]17Y,, . (68)/U
+ [=m)U+m)]'?Y, . (64)/V,

13-14

(15a)
and
exp( + i¢)sin 0Y,,, -, (6,4)
= Fld+tm)I+m+1]1Y,,,,(0,4)/U
+[UFm+ 1)U FEm]Y, . (04)/V,,

(15b)

where U=[QI+12I+3)177 V,=[QI-1)
X 21+ D13 1=12,., m= —1+1,., I—1, and
where in (15b) one keeps either the upper or the lower sign
throughout. For m = [ these relations are

cos Y, (6,8) =Y, ,,(6,8)/W,, (15¢)
exp(ig)sin 8Y;,_, (6,¢)

= — (2D"*Y,, 1.1(0.8)/ W, (15d)
whileform =1 41,
exp(ig)sin 8Y,,(0,4)

= — (2A+2)"2Y) 1151 (6,8)/ W), (15e)

where W, = (2] + 3)'%,

In what follows the complex conjugates of the various
Egs. (15) will also be referred to as Egs. (15).

Recalling the definitions (6) and (10a) we substitute
(15e) into the left-hand side of (13c). This proves (13c).
Similarly, one proves (13b) by substituting (15c¢) and
(15d) into the left-hand side. Finally, the substitution of
(15a) and (15b) into the left-hand side of (13a) proves
(13a) after a simple calculation.

This completes the proof of the addition theorem.

In the above proof we assume that the recursion rela-
tions (7) for Legendre polynomials and the recursion rela-
tions (15) for spherical harmonics are known. This seems a

reasonable assumption since these relations are quite use-
ful,”® and appear in a large number of texts on mathemat-
ical physics and quantum mechanics.

Equation (4) isimportant in its own right. We now show
that (4) is implied by the addition theorem [i.e., by (1) or
(3]

We substitute the expansion (/ =0,1,2,.., m
= —1.,D
oo 1l
Ylm(95’¢é) = Z z cll'mm‘ YI'm’(02,¢2)’ (16)
I'=0m'= —1['

where the ¢;.,,,, are constants into the right-hand side of
(3) and multiply (3) by Y% (6,,¢,), where 1=0,1,2,...,
I #landm = —I,...,I. Keeping (6,,4,) and (8 1,01) fixed
we integrate over the entire solid angle (), where
dQ), = d¢, sin 6, df,. By the orthonormality of the spheri-
cal harmonics, (3) takes the form

;o
0= 3 Y2(01.81)C¢/mm
m= —1 .

so that ¢,7,; =0, where ] #/and i = —1,...,]. Hence we

can drop the summation over /' in (16) and set/’ equal to /.
Then (16) reduces to (4) with ¢y, =Cppp

(17)
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In a recent paper in this Journal,! Sztrajman has de-
scribed an interesting and unusual oscillating system con-
sisting of two equal point masses, m, joined by a rigid mass-
less rod of length A and constrained to move in orthogonal
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directions as shown in Fig. 1(a). Since the rod is inextensi-
ble it is clear that the amplitude of oscillation A is fixed,
while the frequency of the motion @ may have any value.
This contrasts with the usual behavior of a simple harmon-
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