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ABSTRACT

The use of information measures for model selection is examined to di-

agnose model physical parameterizations. Although the resolved dynamical

equations of atmospheric or oceanic global numerical models are well es-

tablished, the development and evaluation of parameterizations that represent

subgrid-scale effects pose a big challenge. For climate studies, the parameters

or parameterizations are usually selected according to a root-mean-square er-

ror criterion, that measures the differences between the model state evolution

and observations along the trajectory. However, inaccurate initial conditions

and systematic model errors contaminate root-mean-square error measures. In

this work, information theory quantifiers, in particular Shannon entropy, sta-

tistical complexity and Jensen-Shannon divergence, are evaluated as measures

of the model dynamics. An ordinal analysis is conducted using the Bandt-

Pompe symbolic data reduction in the signals. The proposed ordinal infor-

mation measures are examined in the two-scale Lorenz’96 system. By com-

paring the two-scale Lorenz’96 system signals with a one-scale Lorenz’96

system with deterministic and stochastic parameterizations, we show that in-

formation measures are able to select the correct model and to distinguish

the parameterizations including the degree of stochasticity that results in the

closest model dynamics to the two-scale Lorenz’96 system.
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1. Introduction37

The numerical models for climate predictions and weather forecasts involve a set of dynam-38

ical equations which represents the atmospheric or oceanic motions in a grid. Coupled to the39

resolved dynamical equations of the models, there is a set of parameterizations which represents40

the subgrid-scale physical processes. The model parameterizations are responsible for a large41

fraction of model error and thus for the resultant uncertainty associated to climate predictions (see42

e.g. Stainforth et al. 2005). One major challenge in model development is to decrease model er-43

ror by recovering aspects of the natural system evolution represented by the parameterizations in44

the model. However, the actual dynamics of the system is unknown; limited and sparse observa-45

tions with associated measurement errors is the only source of information of the natural system46

evolution. The usual procedure for parameterization development and also for inferring unknown47

parameters is to tune the parameterization or the parameters in order to decrease root-mean-square48

errors between the model integrations and the observations starting from initial conditions that49

are close to the natural system state at a given time. For short times, the model state is close to50

the natural system state, so that model sensitivity should follow natural system sensitivity (Pulido51

2014). However, systematic model errors drift the model state from the natural system trajectory52

for long times (from 5-days); therefore the model and the natural system differ substantially. In53

this context, observed natural system sensitivity is not useful to constrain model sensitivity, and54

root-mean-square errors give limited information for model improvement.55

Data assimilation techniques have been proposed as a method for estimating model parameters56

(Ruiz et al. 2013a; Aksoy 2015) and for model development (Pulido et al. 2016; Lang et al. 2016).57

In a data assimilation system, the model state is recursively pushed towards the observations at58

the analysis times so that one expects that model sensitivity can be constrained from the observed59
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natural system sensitivity. Under the presence of multiple sources of model errors in a realistic60

scenario, the estimation of model parameters with data assimilation techniques compensates not61

only model errors due to the physical process represented in that parameterization but also other62

sources of model errors. For instance, Ruiz and Pulido (2015) show that estimating the parameters63

associated with moist processes in an atmospheric general circulation model compensates not only64

errors from convection but also errors produced by an incorrect representation of boundary layer65

dynamics. Therefore, the estimated parameters are optimal for that particular combination of66

model errors and for that particular point of the model state. In other situations, that estimated set67

of parameters will not represent the natural system sensitivity.68

Klinker, and Sardeshmukh (1992) examined the initial tendency errors, the differences between69

model sensitivity and observed sensitivity during the first time step from the initial conditions.70

Rodwell and Palmer (2007) show that systematic initial tendency errors can be useful to assess71

climate models. Errors from different sources should be decoupled at initial times and they should72

be localized close to the source locations. In a multi-scale system, the errors that dominate at initial73

times are produced by fast processes. The model sensitivity feedback interactions associated with74

slow processes are expected to be weak compared with fast processes so that they will not be easily75

captured by initial tendency errors (Rodwell and Palmer 2007).76

The predictability of a dynamical system is quantified by the growth rate of errors as the system77

evolves. For chaotic systems, a small error in the initial conditions grows as the prediction range78

increases. The average long-term exponential separation between two trajectories which initially79

differ by an infinitesimal distance is given by the leading Lyapunov exponent. If the leading Lya-80

punov exponent is positive, the system is chaotic — errors grow with time. The leading Lyapunov81

exponent is a possible measure to quantify the predictability of the dynamical system. There is a82

strong relation between the Shannon entropy and the Lyapunov exponents. For a dynamical sys-83
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tem which has a sufficiently smooth probability distribution the Pesin identity holds, the sum of84

the positive Lyapunov exponents is equal to the Kolmogorov-Sinai entropy (Pesin 1977; Eckmann85

and Ruelle 1985). In this way, the permutation Shannon entropy can be considered as an upper86

bound of the Lyapunov exponents (e.g. Bandt and Pompe 2002). Therefore, entropy is also a87

useful quantity to characterize the predictability in the climate system.88

Leung and North (1990) introduce Shannon entropy as a measure of the uncertainty in a climate89

signal. They examine the similarities between a climate and a communication system. A state90

in the climate system with large entropy would be unpredictable. There are many possible states91

that are equally probable. Majda and Gershgoring (2011) propose to use information theory for92

measuring model fidelity and sensitivity. They use the relative entropy to measure the distance93

between the probability distribution functions (PDFs) of the natural system and of the numerical94

model, assuming that both PDFs are Gaussian. Tirabassi and Massoller (2016) use symbolic time-95

series analysis and mutual lag between time series at different grid points to identify communities96

in climate data, i.e. sets of nodes densely interconnected in the network.97

In the present work, we examine information theory measures as a tool to evaluate numeri-98

cal models. We extend the concepts introduced by Majda and Gershgoring (2011) to the use of99

Jensen–Shannon divergence (Grosse et al. 2002) computed with the ordinal symbolic PDFs. This100

ordinal analysis is conducted using the Bandt and Pompe (2002) symbolic data reduction in the101

signals, in particular, to determine the corresponding ordinal-based quantifiers, such as normalized102

Shannon entropy and statistical complexity. They can be used to distinguish different dynamical103

regimes and to discriminate clearly chaotic from stochastic signals (Rosso et al. 2007, 2012a,b).104

By comparing information measures from time series of variables of a set of imperfect models105

with information measures from observed time series, our aim is to find the imperfect numerical106

model that is closest to the information measures of the natural system.107
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Information measures of the two-scale Lorenz’96 system (Lorenz 1996) are evaluated using108

ordinal symbolic analysis as a function of the “physical” parameters of the system: the constant109

forcing and the interaction coefficient between the slow and fast dynamics. This two-scale system110

is then considered as the natural system evolution, while the numerical imperfect model is the111

one-scale Lorenz’96 (Lorenz 1996). We assume the small-scale processes cannot be represented112

explicitly in this imperfect model, so that the effects of small-scale processes are parameterized113

as a polynomial function which depends on large-scale variables. The information measures from114

ordinal symbolic analysis are used to find the most suitable parameterization of the small-scale115

processes. The information measures of the imperfect model should be as close as possible to116

the information measure of the “natural system”, the two-scale Lorenz’96 system. We evaluate117

whether the measures are suitable for parameter selection, this is, whether parameter changes have118

enough sensitivity in the information measures, so that the optimal parameters could be properly119

inferred from information measures.120

Physical parameterizations in atmospheric or oceanic numerical models represent the subgrid-121

scale physical processes, through functional dependences with the resolved variables. These re-122

solved variables, that the parameterizations depend on, are slow large-scale variables; hence in123

general the models lack from small-scale variability. Palmer (2001) suggested the use of stochas-124

tic parameterizations to account for this lack of variability in the models. There are several works125

in the last decade that show that both weather forecasts and climate predictions appear to benefit126

from stochastic parameterizations. For instance, the ensemble prediction system of the European127

Center for Medium-range Weather Forecasts (ECMWF) uses a stochastic kinetic backscatter algo-128

rithm to improve the skill of ensemble forecasting (Shutts 2005). Convection processes have also129

been proposed to be represented through stochastic parameterizations (Christensen et al. 2015).130

Some climate features, such as the quasi-biennial oscillation, are better represented in models with131
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stochastic parameterizations (Piani et al. 2004; Lott et al. 2012). Wilks (2005) showed that includ-132

ing a stochastic parameterization in the Lorenz’96 system produces improvements compared to133

deterministic parameterizations of both the model climatology and ensemble forecast verification134

measures. Here, we evaluate whether the use of information measures is sensitive to stochastic135

parameterizations and whether some of the noise variance parameters of stochastic parameteriza-136

tions may be constrained by trying to reproduce with the model the information measures from137

the observed time series.138

2. Information measures for characterizing model dynamics139

Chaotic dynamical systems are sensitive to initial conditions. These manifest instability every-140

where in the phase space and lead to non-periodic motion, i.e. chaotic time series (Abarbanel141

1996). They are unpredictable in the long term despite the deterministic character of the temporal142

trajectory. In a system undergoing chaotic motion, two neighboring points in the phase space move143

away exponentially. Let x1(t) and x2(t) be two such points, located within a ball of radius R at time144

t. Further, assume that these two points cannot be resolved within the ball due to observational145

error. At some later time t ′ the distance between the points will typically grow to146

|x1(t
′)−x2(t

′)| ≈ |x1(t)−x2(t)| exp(Λ |t ′− t|), (1)

with Λ > 0 for chaotic dynamics, being Λ the leading Lyapunov exponent. When this distance at147

time t ′ exceeds R, the points become observationally distinguishable. This implies that instability148

reveals some information about the phase-space population that was not available at earlier times149

(Abarbanel 1996). Thus, under the above considerations chaos can be thought as an information150

source.151
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The information content of a system is typically evaluated via a PDF, P, describing the charac-152

teristic behavior of some measurable or observable quantity, generally a time series X (t). Quan-153

tifying the information content of a given observable quantity is therefore largely equivalent to154

characterizing its probability distribution. This is often done with the wide family of measures155

called information theory quantifiers (Gray 1990). We can define information theory quantifiers as156

measures able to characterize relevant properties of the PDF associated with the time series which157

can be generated from observations of a dynamical system or from model integrations.158

a. Ordinal symbolic analysis159

The evaluation of quantifiers derived from information theory, like Shannon entropy and sta-160

tistical complexity, supposes some prior knowledge about the system; specifically, a probability161

distribution associated to the time series under analysis should be provided beforehand. Although162

for a physical quantum system, the concept of probability is uniquely defined; there are several163

ways to define a probability distribution for a dynamical system. The traditional is the histogram,164

the state space is partitioned into bins and by counting the number of times Ni that the trajectories165

of an ensemble pass through the i-bin at a given time, the probability is, in this way, defined as166

pi = Ni/N, where N is the total number of trajectories. This symbolic sequence can be regarded167

to as a non causal coarse-grained description of the time series under consideration.168

An alternative definition is given with time sequences. Suppose we use a sequence of L time169

steps and we label the bins, then in L time steps the trajectory passes through L bins, and we170

can form a symbolic sequence of length L. In the symbolic sequence, each symbol from a finite171

alphabet represents a bin, and the pattern is formed by the sequences of bins, which visits the172

trajectory in the L time steps. Counting the occurrence of each pattern, over the total number of173
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sequences we determine the probability distribution. If we diminish the size of the bins, in the174

limit we can derive from this probability the Kolmogorov-Sinai entropy (Schuster and Just 2006).175

For some dynamical systems, the information measures determined from bin-symbolic analysis176

are sensitive to the way the bins are generated (Bollt et al. 2000). Bandt and Pompe (2002) in-177

troduced a simple and robust symbolic methodology that takes into account time causality of the178

time series —a causal coarse-grained methodology— by comparing neighboring values in a time179

series. In this work, we refer as ordinal symbolic analysis to the Bandt and Pompe methodology.180

The symbolic data are: (i) created by ranking the values of the series; and (ii) defined by reorder-181

ing the embedded data in ascending order, which is equivalent to a phase-space reconstruction182

with embedding dimension (pattern length) D. In this way, the diversity of the ordering symbols183

(patterns) derived from a scalar time series is quantified.184

The appropriated symbolic sequence arises naturally from the time series, and no system-based185

assumptions are needed in Bandt and Pompe methodology. In fact, the necessary “partitions” are186

devised by comparing the order of neighboring relative values rather than by apportioning ampli-187

tudes according to different levels. This technique, as opposed to most of those in current practice,188

takes into account the temporal structure of the time series generated by the physical process under189

consideration. As such, it allows us to uncover important details concerning the ordinal structure190

of the time series (Rosso et al. 2007) and can also yield information about temporal correlation191

(Rosso and Masoller 2009a,b).192

The “ordinal patterns” of order (length) D in the Bandt and Pompe methodology are generated193

by194

(s) 7→
(

xs−(D−1),xs−(D−2), . . . ,xs−1,xs

)

, (2)

which assigns to each time s the D-dimensional vector of values at times s− (D−1), . . .,s−1,s.195

By “ordinal pattern” related to the time (s), we mean the permutation π = (r0,r1, . . . ,rD−1) of196
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[0,1, . . . ,D−1] defined by197

xs−rD−1
≤ xs−rD−2

≤ ·· · ≤ xs−r1
≤ xs−r0

. (3)

In this way the vector defined by (2) is converted into a unique symbol π . We set ri < ri−1 if198

xs−ri
= xs−ri−1

for uniqueness, although ties in samples from continuous distributions have null199

probability.200

Then, the occurrence of each symbolic pattern is counted in the whole time series. The prob-201

ability of each symbol, πi, is the number of occurrences of the pattern over the total number202

of analyzed sequences in the time series. The Bandt and Pompe PDF (BP-PDF) is given by203

P = {p(πi), i = 1, . . . ,D!}, with204

p(πi) =
#{s|s ≤ M− (D−1); (s) is of type πi}

M− (D−1)
, (4)

where # denotes cardinality and M is the time series length.205

In order to illustrate ordinal symbolic analysis, let us consider a simple example: a time se-206

ries with seven (M = 7) values X = {4,7,9,10,6,11,3} and compute the BP-PDF for D = 3.207

In this case, the state space is divided into 3! partitions so that 6 mutually exclusive permuta-208

tion symbols are considered. The triplets (4,7,9) and (7,9,10) represent the permutation pattern209

{012}, since they are in increasing order. On the other hand, (9,10,6) and (6,11,3) correspond210

to the permutation pattern {201} since xt+2 < xt < xt+1, while (10,6,11) has the permutation211

pattern {102} with xt+1 < xt < xt+2. Then, the associated probabilities to the 6 patterns are:212

p({012}) = p({201}) = 2/5; p({102}) = 1/5; p({021}) = p({120}) = p({210}) = 0.213

The existence of an attractor in the D-dimensional phase space is not required in the ordinal214

symbolic analysis. The only condition for the applicability of the method is a very weak stationary215

assumption. For k ≤ D , the probability for xt ≤ xt+k should not depend on t.216
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b. Entropy, statistical complexity and Jensen-Shannon divergence217

Entropy is a basic quantity with multiple field-specific interpretations. For instance, it has been218

associated with disorder, state-space volume, and lack of information (Brissaud 2005). When219

dealing with information content, the Shannon entropy is often considered as the foundational220

and most natural one (Shannon 1948; Shannon and Weaver 1949). It is a positive quantity that221

increases with increasing uncertainty and is additive for independent components of a system.222

From a mathematical point of view, Shannon entropy is the only information measure that satisfies223

the Kinchin axioms (Kinchin 1957).224

Let P = {pi; i = 1, . . . ,N} with ∑N
i=1 pi = 1, be a discrete probability distribution, with N the225

number of possible states of the system under study. The “Shannon” logarithmic information226

measure is defined by227

S[P] = −
N

∑
i=1

pi ln(pi) . (5)

This can be regarded to as a measure of the uncertainty(lack of information) associated to the228

physical process described by P. For instance, if S[P] = Smin = 0, we are in a position to predict229

with complete certainty which of the possible outcomes i, whose probabilities are given by pi,230

will actually take place. Our knowledge of the underlying process described by the probability231

distribution is maximal in this instance. In contrast, our knowledge is minimal for a uniform232

distribution Pe ≡ {pi = 1/N, i = 1, . . . ,N} since every outcome exhibits the same probability of233

occurrence. Thus, the uncertainty is maximal, i.e., S[Pe] = Smax = lnN. In the discrete case, we234

define a “normalized” Shannon entropy, 0 ≤ H ≤ 1, as235

H [P] = S[P]/Smax . (6)

Statistical complexity is often characterized by a complicated dynamics generated from rela-236

tively simple systems. Obviously, if the system itself is already involved enough and is constituted237
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by many different parts, it may clearly support a rather intricate dynamics, but perhaps without238

the emergence of typical characteristic patterns (Kantz et al. 1998). Therefore, a complex system239

does not necessarily generate a complex output. Statistical complexity is therefore related to struc-240

tures hidden in the dynamics, emerging from a system which itself can be much simpler than the241

dynamics it generates (Kantz et al. 1998).242

We follow the original idea for statistical complexity introduced by López-Ruiz et al. (1995).243

A suitable complexity measure should vanish both for completely ordered and for completely244

random systems and it cannot only rely on the concept of information (which are maximal and245

minimal for the above mentioned systems). It can be defined as the product of a measure of246

information and a measure of disequilibrium, i.e. some kind of distance from the equiprobable247

distribution of the accessible states of a system (López-Ruiz et al. 1995; Lamberti et al. 2004).248

The statistical complexity measure to be used here (Lamberti et al. 2004; Rosso et al. 2007) is249

defined through the functional product form250

C [P] = QJS[P,Pe] ·H [P] (7)

of the normalized Shannon entropy H , see (6), and the disequilibrium QJS. It is defined in terms251

of the Jensen-Shannon divergence DJS[P,Pe],252

QJS[P,Pe] = Q0 ·DJS[P,Pe] = Q0 · {S[(P+Pe)/2]−S[P]/2−S[Pe]/2}, (8)

where Q0 is equal to the inverse of the maximum of DJS[P,Pe] which is obtained when one of the253

components of P is one and the remaining are zero. Therefore, the disequilibrium QJS measures254

the normalized distance of the probability distribution of the system under study P and the uniform255

distribution Pe which is the equilibrium PDF.256

For a given value of H , the range of possible C values varies between a minimum Cmin and257

a maximum Cmax , restricting the possible values of the statistical complexity measure (Martı́n258
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et al. 2006). The planar representation entropy-complexity plane, H ×C , is an efficient tool to259

distinguish between the deterministic chaotic and stochastic nature of a time series since the per-260

mutation quantifiers have distinctive behaviors for different types of dynamics (Rosso et al. 2007).261

This tool has also been used for visualization and for a characterization of different dynamical262

regimes when the system parameters vary (Zanin et al. 2012).263

Finally, we consider a measure for model evaluation against the observed time series. A measure264

of the distance between the probabilities from the model and observed time series. This concept265

has been used earlier by Majda and Gershgoring (2011) who called it model fidelity. They use the266

Kullback-Leibler relative entropy to measure the distance between the two probabilities. Arnold et267

al. (2013) evaluated the use of Hellinger distance. They found similar results using the Hellinger268

distance and Kullback-Leibler distance in the Lorenz’96 system. We use the Jensen-Shannon269

divergence to measure the distance between the probabilities to be coherent with the information270

theory quantifiers used in this work and because it is a symmetric positive-definite quantity. The271

square-root of the Jensen-Shannon divergence satisfies metric properties and triangle inequality272

(Lin 1991).273

Assuming PM and PO are the corresponding BP-PDFs from the model time series and from274

the observed time series respectively, the Jensen-Shannon divergence is defined as a symmetric275

measure of the Kullback-Leibler divergence,276

DJS[PM,PO] = ∑ pM
i ln(pM

i /pO
i )+ pO

i ln(pO
i /pM

i ) = ∑(pM
i − pO

i ) ln(pM
i /pO

i ), (9)

it vanishes when pM
i = pO

i for all i. It can also be expressed in terms of the Shannon entropy (5):277

DJS[PM,PO] = S[(PM +PO)/2]−S[PM]/2−S[PO]/2 . (10)

To evaluate (10), we determine the probability of the observed time series PO and of the differ-278

ent model time series PM using ordinal symbolic analysis. The Jensen-Shannon divergence is a279
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measure of distance between two PDFs, PM and PO, so that a small Jensen-Shannon divergence280

indicates a model PDF close to the observed PDF. The best model or the optimal parameters are281

the ones whose the time series gives the smallest Jensen-Shannon divergence.282

3. Description of the numerical experiments283

In the numerical experiments, we evaluate the potential of ordinal symbolic analysis to select284

subgrid-scale parameterizations using the integration of the two-scale Lorenz’96 system (Lorenz285

1996) as the natural system evolution. The equations of this system are given by a set of N286

equations of large-scale variables Xn,287

dXn

dt
+Xn−1(Xn−2 −Xn+1)+Xn = F − h c

b

nM/N

∑
j=(M/N)(n−1)+1

Yj ; (11)

where n = 1, . . . ,N; and a set of M equations of small-scale variables Ym, given by288

dYm

dt
+ c b Ym+1(Ym+2 −Ym−1)+ c Ym =

h c

b
Xint[(m−1)/(M/N)]+1 ; (12)

where m = 1, . . . ,M. Note that both sets of equations (Eqs. (11) and (12)) are in a periodic domain,289

that is X0 = XN, X−1 = XN−1 and Y0 =YM , Y1 = YM+1, Y2 =YM+2.290

Equations (11) and (12) are essentially the same but with different scales. They have coupling291

terms between them, the equations of small-scale variables, (12), are forced by the local (closest)292

large-scale variable. The equations of large-scale variables, (11), are forced by the external forcing293

F , and by the averaged small-scale variables which are located around the large-scale variable in294

consideration.295

Lorenz (1996) suggested this simple model as a one-dimensional atmospheric model with two296

distinct time scales in a latitudinal circle with interactions between the two scales and he used297

it to illustrate atmospheric predictability issues. In the experiments, we use the standard set of298

constants: N = 8, M = 256, coupling constant h = 1, time-scale ratio c = 10, and spatial-scale299
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ratio b = 10 (unless stated otherwise). Note that setting h = 0 in (11), we recover the one-scale300

Lorenz’96 system.301

In reality, the atmospheric numerical models cannot represent the small-scale variables associ-302

ated with convection processes, small-scale waves, etc., so that the effects of the small-scale vari-303

ables on the large-scale equations must be parameterized in the numerical models through forcing304

terms with functional dependencies of only the large-scale variables and a set of free parameters.305

Thus, the equations of the imperfect model are306

dXM
n

dt
+XM

n−1(X
M
n−2 −XM

n+1)+XM
n = Gn(X

M
n ,a0, · · · ,aJ) ; (13)

where n = 1, . . . ,N and XM
n represents the variables of the imperfect model. The function307

Gn(X
M
n ,a0, · · · ,aJ) is a parameterization of the small-scale processes and the forcing term, it seeks308

to mimic the right hand side term of (11). The a j are free parameters.309

Two representations of the forcing term are examined in this work: a) a deterministic parame-310

terization given by a polynomial function,311

Gn(X
M
n , a0, · · · ,aJ) =

J

∑
j=0

a j · (XM
n ) j ; (14)

and b) a stochastic parameterization defined in Wilks (2005) by a polynomial function and a312

stochastic component given by realizations of a first-order autoregressive process313

Gn(X
M
n , a0, · · · ,aJ,σ ,φ) =

J

∑
j=0

a j · (XM
n ) j + ηn(t) ; (15)

where314

ηn(t) = φ ηn (t −∆t) + σ (1−φ 2)1/2 νk(t) , (16)

φ is the autoregressive parameter, νk is a realization of a normal distribution with zero mean and315

unit variance, and σ is the standard deviation of the process. Both φ and σ , apart from a j, are free316

parameters.317
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The Lorenz’96 system was integrated using a Runge-Kutta of fourth order, with an integration318

step of δ = 0.001. In what follows the time resolution of the time series or the observational time319

resolution is taken to be δ = 0.05, which considering the growth rates of the system, it represents320

6 hours in the atmosphere and so it is able to capture the instability growth (Lorenz 1996). To321

avoid spin-up behavior, the state is started from a random initial condition and it is integrated by322

105 observational times (this corresponds to 5 · 106 time steps). The resulting state is used as the323

initial condition and it is integrated further by Nd = 105 observational times (i.e. Nd is the time324

series length) which are used to compute the information measures.325

In order to evaluate the imperfect model, we use an “observed” time series of a single large-326

scale variable from the natural system evolution, the two-scale Lorenz’96 system. This is, we327

assume that the large-scale is the only information observed so that signals from a single large-328

scale variable are used in the ordinal symbolic analysis. The small-scale dynamics is neither329

modeled nor observed, except in the “true” state integration which is conducted with the two-scale330

Lorenz’96 and considered as the natural system trajectory.331

In all the experiments, we use the ordinal symbolic analysis to determine BP-PDFs associated332

with the time series of the dynamical system and then the information quantifiers, normalized333

Shannon entropy (6), statistical complexity (7) and Jensen-Shannon divergence (10), are com-334

puted. The length of the pattern for the ordinal analysis is taken to be D = 6. This gives a total of335

D! = 6! = 720 possible ordinal symbolic patterns, which clearly satisfy the condition Nd ≫ D! for336

robust statistics (Rosso et al. 2007). The choice of the length of the pattern is a compromise deci-337

sion, a longer D gives a more casual and higher resolution PDF, but it requires a longer time series338

for accurate statistics. We took D = 6 as in Rosso et al. (2007); Serinaldi et al. (2014). However,339

note that because of the short climate time series available, Tirabassi and Massoller (2016) used340

D = 3 for monthly climate time series with meaningful results.341
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In a first set of experiments, we explore the two-scale Lorenz’96 system with the information342

quantifiers: Shannon entropy (6) and statistical complexity (7). Different dynamical regimes are343

uncovered as the forcing and the coupling coefficient are varied.344

A second set of experiments focuses on model fidelity, in which we determine the BP-PDFs of345

the observed time series PO and of the modeled time series PM, and so (10) is evaluated. Observed346

and modeled time series are completely independent including the initial condition. They are347

both assumed to be on the attractor of the dynamical system (after the spin-up integration). The348

synthetic observed time series is in the second set of experiments generated with an integration of349

the one-scale Lorenz ’96 system and a set of prescribed parameter values. Then we can evaluate350

the sensitivity of the information quantifiers to the model parameters for integration of the one-351

scale Lorenz ’96 system with different parameter values. In particular, we expect a minimum in the352

Jensen-Shannon divergence when the model parameters are set at the “true” values (the ones used353

to generate the observations). The evaluated parameterizations in this perfect model framework354

are a deterministic parameterization, which consists of a quadratic polynomial function (14), and355

a stochastic parameterization, which consists of a quadratic polynomial function and a first-order356

autoregressive process (15).357

To estimate the optimal parameter values, a genetic algorithm was implemented (Charbonneau358

2002; Pulido et al. 2012). As in Pulido et al. (2012), the genetic algorithm is able to find the global359

minimum even in the presence of multiple local minima, however it presents slow convergence.360

Therefore, only 5 generations were evolved. Then, the newUOA optimization (Powell 2006) was361

applied, using as initial guess parameters the ones estimated with the genetic algorithm. It is362

an unconstrained minimization algorithm which does not require derivatives. Both, the genetic363

algorithm and newUOA are suitable for control spaces of up to a few hundred dimensions. The364

Jensen-Shannon divergence is used as the minimization function in the optimization method.365
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The third set of experiments explores the Jensen-Shannon divergence for imperfect models. In366

this case the observed time series is obtained from a ’nature’ integration of the two-scale Lorenz367

’96 system, and we seek to reproduce the dynamics of the system with integrations of imperfect368

models generated from one-scale Lorenz ’96 systems with deterministic and stochastic parame-369

terizations. From these experiments we determine a set of optimal values using the mentioned370

optimization method for a deterministic and stochastic parameterization that seek to represent the371

small-scale dynamical effects of the two-scale Lorenz ’96 system. These optimal parameter values372

are used in long-term climate prediction experiments to examine whether the optimal parameters373

have a positive impact on climate measures.374

4. Results and discussion375

a. Experiments with the two-scale Lorenz ’96 system376

First, the ordinal symbolic analysis is applied to the integration of what we consider as the nat-377

ural system evolution, the two-scale Lorenz ’96 system. Integrations varying the forcing F were378

conducted with a resolution of δF = 0.01, and the ordinal symbolic analysis is applied to each379

integration (i.e. time series of the Lorenz ’96 variable X1). Figure 1 shows the information quan-380

tifiers: permutation entropy (H , Fig. 1a), permutation statistical complexity (C , Fig. 1b). From381

Figs. 1a and 1b, four regions with different dynamical regimes are found (which are delimited by382

vertical dotted lines): i) For small external forcing, 0 ≤ F ≤ 3.75, the system is dissipative and so383

after the spinup time the entropy goes to zero. ii) A narrow region, between 3.75 < F < 4.5, with384

high permutation entropy and high permutation statistical complexity. iii) An intermediate region,385

between 5 < F < 12, with small entropy H ≈ 0.2− 0.23 and similar complexity. v) Finally a386
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region for larger F , F > 13, which has large entropy H > 0.4 but relatively small complexity387

(C < 0.4).388

Figure 1c shows the causal entropy-complexity plane (H ×C ) which combines the entropy and389

statistical complexity measures. In this plane, the statistical complexity has a minimum and max-390

imum value as a function of entropy (Cmin and Cmax respectively), which are the upper and lower391

continuous curves in Fig. 1c, so that all the possible dynamical regimes are limited to the area392

between these curves. The four dynamical regimes can be clearly distinguished in the entropy-393

complexity plane. The dissipative regime is located at the extreme of null entropy and complexity.394

The quasi-periodic dynamical regime (iii) with low entropy and maximal statistical complexity395

is denoted by the triangles that are close to the upper curve which represents the maximal sta-396

tistical complexity. The large F chaotic regime (iv) which has large entropy and relatively small397

complexity is represented with gray circles. The gray triangles correspond to the narrow region398

between 3.75< F < 4.5 with large entropy and maximal complexity (at the Cmax curve). Since the399

system is purely deterministic, there are no dynamical regimes in the large entropy region, close400

to H = 1, which would represent a purely stochastic system (Rosso et al. 2007).401

402

403

Figure 2 shows the time series, resulting from the dynamical regimes obtained from the two-404

scale Lorenz ’96 dynamical system (except the dissipative regime) identified using the information405

quantifiers, for F = 4 (Figure 2a), F = 7 (Figure 2b) and F = 18 (Figure 2c). These represent quasi-406

periodic motion with high entropy, quasi-periodic motion with low entropy and chaotic motion,407

respectively.408

Figure 3 shows the information quantifiers from integrations of the two-scale Lorenz ’96 system409

varying the coupling constant h. The external forcing is fixed to F = 4,6,18. For h → 0 we recover410
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the measures for the one-scale Lorenz ’96 system since the two sets of equations, (11) and (12),411

are uncoupled. In that case, the permutation entropy and the permutation statistical complexity412

scales with the forcing. For F = 4, there is a peak of entropy and complexity when the coupling413

constant h is close to 1, which was the regime already found in Fig. 1 with complexity close to414

Cmax (note that in those integrations h = 1). As we increase F to 6, the large complexity regime415

is found for larger coupling between the two scales, for h between 1.4 and 2. On the other hand,416

small entropy and complexity is found for the F = 18 for coupling constants between 1 and 2. For417

larger coupling constants, a regime with high disordered patterns is found (small complexity and418

large entropy). For coupling constants close to 5, a regime with high statistical complexity appears419

to emerge for the F = 18 but we did not explore integrations for larger coupling constants. Some420

of the dynamical regimes that appear to emerge from the Lorenz ’96 system varying the coupling421

constant and varying stochastic noise will be investigated further in a follow-up work.422

423

b. Perfect-model experiments424

To evaluate the potential of information quantifiers to distinguish between time series generated425

with different parameterizations, we conducted a so-called twin experiment. We consider the one-426

scale Lorenz ’96 system, (13), with a known parameterization as the natural system evolution to427

generate the observed time series and then we evaluate the information measures for integrations428

of the one-scale Lorenz ’96 system with varying parameters using the hybrid optimization algo-429

rithm, with genetic algorithm and newUOA methods. This is an experiment where the model is430

assumed perfect, and a set of prescribed parameters are used to generate the observations. Then,431

the optimization method is used to estimate the parameters through the differences in the observed432
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and modeled time series. In this way, we can evaluate whether the Jensen-Shannon divergence433

measure determined with the ordinal symbolic analysis is able to estimate the “true” parameters.434

The first perfect model experiment uses a deterministic quadratic parameterization, (14). The435

true parameter values are set to at
0 = 17.0, at

1 = −1.20, at
2 = 0.035 (t superscript denotes true436

values). These values are expected to be a representative deterministic parameterization of the437

two-scale model (Pulido et al. 2016). The integration with the true parameters is considered as the438

observational time series. The Jensen-Shannon divergence, (10), and Hellinger distance (Arnold439

et al. 2013) are minimized through the hybrid optimization algorithm which seek for the optimal440

model parameter values. The symbolic ordinal analysis is applied to each model and observational441

time series to evaluate the Jensen-Shannon divergence, (10), and Hellinger distance. The optimal442

parameter values obtained with the hybrid optimization algorithm were a0 = 17.1, a1 = −1.18443

and a2 = 0.032 using the Jensen-Shannon divergence and a0 = 16.9, a1 =−1.17 and a2 = 0.031444

using the Hellinger distance. Both distance measures give accurate estimates. In all preliminary445

experiments both distance measures performed similarly well, so that in what follows we only446

show the experiments with Jensen-Shannon divergence. This twin experiment shows that the447

information measures can be used to determine optimal parameters, the estimated optimal values448

are very close to the true parameter values.449

The sensitivity in the Jensen-Shannon divergence to the parameters is shown in Fig. 4 varying450

each of the parameters and the other two parameters are fixed to the optimal values (which were451

obtained with the hybrid optimization method using Jensen-Shannon divergence). The optimal452

parameter is very well defined in the three parameters. The minimum of the Jensen-Shannon di-453

vergence is clearly located at the true parameters. One weak point of the measure is that it presents454

noise, including several local extremes. This affects the convergence speed of optimization meth-455

ods.456
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A second perfect-model experiment takes a stochastic parameterization, (15), for the polyno-457

mial coefficients we use the same true values as in the previous experiment, at
0 = 17, at

1 = −1.2,458

at
2 = 0.035 but we now include a noise forcing term with standard deviation σ t = 1. Two op-459

timization experiments with autoregressive parameters φ t = 0 and φ t = 0.984 were conducted.460

These two extreme values were taken by Wilks (2005) to represent serially independent and se-461

rially persistent stochastic forcing, respectively. The resulting optimal parameter values of the462

hybrid optimization algorithm are shown in Table 1. The combined estimation of deterministic463

parameters and the stochastic parameter σ gives rather good estimates. The stochastic parameter464

is slightly underestimated 10-20% in the two optimization experiments.465

Once the optimal parameters for the stochastic parameterization are estimated, we then evaluate466

the sensitivity of Jensen-Shannon divergence measure with respect to this observational time se-467

ries varying σ values in the model integrations. Figure 5 depicts the Jensen-Shannon divergence468

as a function of σ parameter for autoregressive parameters of φ t = 0 and φ t = 0.984 (the other469

parameters are fixed to the optimal values that were estimated with the hybrid optimization algo-470

rithm). A rather narrow negative peak is found in Fig. 5 close to the true parameter values. The471

φ t = 0.984 case (Fig. 5b) appears to be better conditioned.472

473

c. Imperfect-model experiments474

The usual procedure to infer unknown parameters of a parameterization scheme in an imper-475

fect, coarse-grained, model is to tune the unknown parameters and to evaluate the response of476

the changes in the parameters on the root-mean-square error, which measures the differences be-477

tween the evolution of some representative variables and the corresponding observed variables (or478

reanalysis data). The optimal parameters are the ones that minimize the root-mean-square error.479
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We conducted a similar experiment with synthetic observations but using information measures,480

i.e. Jensen-Shannon divergence, instead of root-mean-square error measures. The advantage of481

the ordinal symbolic analysis is that as it does not depend on the amplitude but on the “shape”482

of the patterns, it is not sensitive to possible systematic model errors. The analysis is performed483

in a sufficiently long trajectory (105 observational times). The probability of all the possible pat-484

terns is composed by a large number of cases and it is expected to be independent of the initial485

condition (the spin-up time is not considered in the statistics). The observed time series corre-486

sponds to a single variable taken from a model integration of the two-scale Lorenz ’96 system487

which is started from random initial conditions and the spinup period is removed. The model time488

series is also generated from random initial conditions and integrating the one-scale Lorenz ’96489

system. Therefore, the two time series are completely independent—they do not have a common490

initial condition. In this sense, the Jensen-Shannon divergence is a global measure of the system491

dynamics.492

Since we deal with an imperfect model, which does not represent explicitly the small-scale493

dynamics, the parameter estimation is not a twin experiment in which we know the “true” optimal494

parameters, so that the existence of a single set of optimal parameters is not a priori ensured.495

We conducted two extreme experiments, one with the natural system evolution set for an external496

forcing of F = 7, which results in quasi-periodic motion, and the other for a forcing of F = 18,497

which results in chaotic dynamical behavior. As mentioned, the ordinal symbolic analysis may498

be applied to chaotic and quasi-periodic time series as long as the weak stationary assumption is499

satisfied.500

The hybrid optimization algorithm was applied to the two observed time series. The genetic501

algorithm restricts the search for optimal values to the region delimited by the maximum and502

minimum values stated in Table 2. The parameter limits (maximum and minimum values) of the503
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search region were taken according to the values obtained by Pulido et al. (2016). In the case that504

the resulting optimal value of the genetic algorithm is at a boundary of the region, it is an indicative505

that the region is too narrow in that parameter and that the limit value should be changed. The506

estimated optimal values with the hybrid optimization algorithm for F = 7 and F = 18 are also507

shown in Table 2.508

The Jensen-Shannon divergence sensitivity to each of the parameter values for the case F = 7,509

varying one parameter value and fixing the other two to the optimal values which resulted from510

the hybrid optimization algorithm, is shown in Fig. 6. Parameters exhibit strong sensitivity in511

a small region close to the optimal values. These sensitivity experiments are produced after the512

optimization, with independent integrations that are not related to the optimization method. For513

some parameter values, the Lorenz ’96 model presents numerical instabilities. A uniform time514

series is assigned for these cases and so a delta PDF results, which in turn gives a large Jensen-515

Shannon divergence.516

The sensitivity of the Jensen-Shannon divergence to each of the parameters for the case of517

F = 18 is shown in Fig. 7, while the other two parameters are fixed at the optimal values. The518

parameter a0 exhibits a reasonable sensitivity around the optimal value. On the other hand, a1519

and a2 show several peaks so that they are more difficult to be precisely estimated, however, the520

genetic algorithm is clearly able to find the global minimum even in the presence of these local521

minima (Fig. 7c).522

523

524

As the information quantifiers give useful information on the optimal parameter values of the525

deterministic parameterization, we now turn our attention to stochastic parameterizations for the526

imperfect case. We include the first-order autoregressive process (16) in the parameterization (15),527
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and search with the hybrid optimization algorithm for the optimal parameter values including the528

optimal standard deviation σ , (a0, a1, a2, σ ), and again we only explore for two fixed autore-529

gressive parameters φ = 0 and φ = 0.984. The resulting optimal parameter values of the hybrid530

optimization algorithm are shown in Table 2.531

The Jensen-Shannon divergence as a function of the standard deviation is depicted in Fig. 8 for532

the optimal deterministic parameter values (shown in Table 2). For an external forcing of F = 7 a533

smooth function is found with a clear minimum (see Fig. 8a). The minimum is found at σ = 0.32534

for φ = 0. Similar values of the Jensen-Shannon divergence are found at σ = 0.15 for φ = 0.984.535

Both sets of values are suitable for representing the stochastic process that mimics the effects536

of Lorenz’96 small-scale variables. Note that the Jensen-Shannon divergence for the optimal537

σ value is smaller than the one for σ = 0 so that the stochastic parameterization improves the538

representation of small-scale variables. This is also valid when both deterministic and stochastic539

parameterizations have their own optimal parameters.540

For F = 18 Jensen-Shannon divergence has smaller values than F = 7. This means that the541

parameterization is able to represent better the effects of the small-scale variables for this case due542

to the chaotic dynamics. The divergence depicts a noisy dependence, but a constrained optimal543

range of the standard deviation is still clearly identified from Fig. 8b. The minimum is at σ = 4.67544

for the φ = 0 experiment. Similar Jensen-Shannon divergence values are also found for the φ =545

0.984 experiment with a minimum at σ = 2.12.546

To evaluate the information quantifiers as a method for model selection. We conducted an ex-547

periment in which we assume that the model has different parameterizations, changing the order548

of the polynomial function in the deterministic parameterization and for some experiments adding549

the stochastic process (16). A total of eight optimization experiments with different parameteri-550

zations were conducted for an observed time series taken from the two-scale Lorenz ’96 system551
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with F = 18. For each parameterization, the set of optimal parameters estimated by the hybrid552

optimization algorithm are stated in Table 3. The square root of Jensen-Shannon divergence for553

the optimal parameters is also shown in the Table. The best parameterization is the one that gives554

the minimal Jensen-Shannon divergence from the observed PDF. The quadratic polynomial pa-555

rameterization is the best deterministic one. Interestingly, the stochastic parameterizations present556

a significantly better performance with this information measure. The higher-order polynomial557

terms are very sensitive to small changes in the variables and parameters and for some parameter558

values they produce numerical instabilities in the Lorenz ’96 model (Pulido et al. 2016). Indeed,559

the optimization experiment with the fourth-order polynomial stochastic parameterization did not560

converge towards optimal parameter values because of these ubiquitous numerical instabilities (to561

overcome this, careful manual changes in the parameter limit values would be required).562

The forcing given by the parameterizations with optimal parameters for the F = 18 experiments,563

including the quadratic deterministic, and the quadratic stochastic parameterizations with φ = 0564

and with φ = 0.984 are shown in Fig. 9 (Panels (a), (b) and (c) respectively). The forcing given565

by the small-scale variables in the two-scale Lorenz ’96 is also shown in the Figure (gray dots).566

We emphasize, this “true” forcing is only shown as the purpose of evaluation of the optimization567

experiments, but the time series of a single large-scale state variable is the only source of infor-568

mation used in the optimization experiments. The simple polynomial parameterizations with fixed569

standard deviation represent rather well the complex forcing dependencies given by the small-570

scale variable. However, they are obviously unable to represent the dependence of the standard571

deviation with the value of the state variable particularly at the tail (large X values) and with the572

dX/dt > 0 and dX/dt < 0 branches of the forcing, see Crommelin and Vanden-Eijnden (2008);573

Pulido et al. (2016).574
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As an independent measure of the climatology of the model with optimal parameters, we use575

the classical histogram PDF. They were computed from the whole integration with the different576

optimal parameter values. Figure 10 shows the histogram PDF for the nature integration for F = 18577

and the ones with the optimal parameters for the quadratic deterministic parameterization (dashed578

line) and for the stochastic parameterizations using φ = 0 (dotted line) and φ = 0.984 (gray line).579

A very good agreement between the true histogram PDF and the model PDF is achieved. The580

stochastic parameterizations give a slightly better agreement to the true histogram PDF.581

5. Conclusions582

Ordinal symbolic analysis only depends on the repetition of patterns within a time series. If it583

is combined with information measures, they represent a useful framework to evaluate models, in584

particular unresolved processes of multi-scale models. Since ordinal symbolic analysis does not585

depend directly on the state, the quantities can be used for long time intervals (time series) even586

in the presence of model error. The ordinal symbolic analysis is used in this work for long time587

series and it accounts for the model fidelity with strong sensitivity to the parameters of the subgrid588

parameterization which represents the small-scale processes.589

Although stochastic parameterizations appear to give improvements in the atmospheric numeri-590

cal models, the tuning of stochastic parameters represents a challenge. On-line parameter estima-591

tion techniques as Kalman filtering present difficulties estimating these stochastic parameters even592

for small and intermediate systems. DelSole and Yang (2010) show that it is not possible to con-593

strain stochastic parameters with ensemble-based Kalmar filter augmenting the model state with594

the stochastic parameters. Ruiz et al. (2013b) show that a separate adaptive inflation treatment595

is required for the parameter covariance to avoid its collapse. Pulido et al. (2016) show that the596

time variability given by Kalman filtering parameter estimates is not useful to constrain stochastic597
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parameters in a subgrid parameterization. In this work, we show that information measures from598

ordinal symbolic analysis are useful for tuning stochastic parameters with promising results.599

This work evaluates the sensitivity of the parameters to the information measures, which is use-600

ful for model selection. Furthermore, for parameter optimization a hybrid optimization technique601

using a genetic and newUOA algorithms was implemented in this work for low dimensional mod-602

els. For some cases, the information measures based on the ordinal symbolic analysis do not give603

smooth dependencies with the parameters. This may be a problem for traditional gradient descent604

optimization methods. For parameter estimation in high-dimensional models more sophisticated605

optimization techniques suitable for noisy cost functions, like simulated annealing, are required606

to minimize the Jensen-Shannon divergence for the probability distributions of observations and607

an imperfect model. The evaluation of optimization techniques in high-dimensional models with608

information measures will be examined in a follow-up work.609

The proposed parameter estimation method offers an alternative framework to complex data610

assimilation systems which couple model state to observations. On the other hand, in the proposed611

method the model time series is generated independently of the observed state of the system. The612

model state is assumed to be in its own model attractor (which is not necessarily the one from613

nature). Only partial observation of the system is needed, indeed the observed time series may be614

a single relevant variable or a small set of variables. The information measures could be applied615

to a set of free integrations from different climate models or a set of free integrations from a single616

climate model with different parameterizations or parameters, to evaluate from an observed time617

series, which climate model or parameterization give the most accurate results—the closest PDF618

to the observed PDF.619

This work evaluates the information measures with the Lorenz’96 system, which is a small620

model with 8 – 256 variables. Two major points need to be evaluated with more realistic models,621
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the impact of a higher-dimensional state space on the information measures, and the length of the622

time series needed to compute the probability distributions. The length of the time series used in623

this work would represent about 70 years in the atmospheric time scale. It depends on two factors,624

the required time resolution and the length of the pattern used for the ordinal symbolic analysis.625

The time resolution used in this work is related to the time-scale of the resolved large-scale pro-626

cesses, and indeed the used time series corresponds to a large-scale variable. The length of the627

sequence is taken to be six in this work, as used in other applications Sippel et al. (2016); Seri-628

naldi et al. (2014). However, Tirabassi and Massoller (2016) used three for monthly climate time629

series (which are of limited length) with meaningful results. The way to combine the information630

measures of different variables for high-dimensional problems needs to be explored.631

The information measures can deal with weak observational noise (Rosso et al. 2007), how-632

ever as expected Shannon entropy gives a maximum if the time series is stochastic without633

correlations— completely dominated by white noise. For the cases with strong observational634

noise, the signal may not be useful for analyzing fast processes, but averaging the time series and635

applying ordinal symbolic analysis in longer time steps may give useful information for slower636

physical processes.637
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Rosso O.A., Carpi L.C., Saco P.M., Gómez Ravetti M., Plastino A., Larrondo H., 2012: Causality717

and the Entropy-Complexity Plane: Robustness and Missing Ordinal Patterns. Physica A, 391,718

42–55.719
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Coef F = 7 F = 18

Min Max Det φ = 0 φ = 0.984 Min Max Det φ = 0 φ = 0.984
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TABLE 2. Values of the parameters (ai, i degree of the polynomial term and σ ). The maximum and minimum

values used to constrain the optimization and the optimal values obtained with the hybrid optimization algorithm

corresponding to the deterministic (Det), φ = 0 and φ = 0.984 experiments.
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a0 a1 a2 a3 a4 σ
√

DJS

Linear 18.36 -0.981 0.3950E-01

Quadratic 17.7 -1.19 0.038 0.3224E-01
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TABLE 3. Estimated values of the parameters (ai, i degree of the polynomial term, and stochastic parameter

σ ) for the deterministic and stochastic parameterizations with φ = 0 in the imperfect-model experiment.
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given set of parameters, and the one from the natural two-scale Lorenz ’96 system evolution for an external

forcing of F = 18. One parameter value is varied and the other two are kept fixed at the optimal values (Table 2),
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FIG. 9. Scatterplots of the forcing as a function of the state variable given by the two-scale Lorenz ’96

model (gray dots) and the one given by the deterministic (a) and the stochastic parameterizations, φ = 0 (b) and

φ = 0.984 (c), with optimal parameters (black dots) for the F = 18 case.
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