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ABSTRACT

The use of information measures for model selection is examined to di-
agnose model physical parameterizations. Although the resolved dynamical
equations of atmospheric or oceanic global numerical models are well es-
tablished, the development and evaluation of parameterizations that represent
subgrid-scale effects pose a big challenge. For climate studies, the parameters
or parameterizations are usually selected according to a root-mean-square er-
ror criterion, that measures the differences between the model state evolution
and observations along the trajectory. However, inaccurate initial conditions
and systematic model errors contaminate root-mean-square error measures. In
this work, information theory quantifiers, in particular Shannon entropy, sta-
tistical complexity and Jensen-Shannon divergence, are evaluated as measures
of the model dynamics. An ordinal analysis is conducted using the Bandt-
Pompe symbolic data reduction in the signals. The proposed ordinal infor-
mation measures are examined in the two-scale Lorenz’96 system. By com-
paring the two-scale Lorenz’96 system signals with a one-scale Lorenz’96
system with deterministic and stochastic parameterizations, we show that in-
formation measures are able to select the correct model and to distinguish
the parameterizations including the degree of stochasticity that results in the

closest model dynamics to the two-scale Lorenz’96 system.
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1. Introduction

The numerical models for climate predictions and weather forecasts involve a set of dynam-
ical equations which represents the atmospheric or oceanic motions in a grid. Coupled to the
resolved dynamical equations of the models, there is a set of parameterizations which represents
the subgrid-scale physical processes. The model parameterizations are responsible for a large
fraction of model error and thus for the resultant uncertainty associated to climate predictions (see
e.g. Stainforth et al. 2005). One major challenge in model development is to decrease model er-
ror by recovering aspects of the natural system evolution represented by the parameterizations in
the model. However, the actual dynamics of the system is unknown; limited and sparse observa-
tions with associated measurement errors is the only source of information of the natural system
evolution. The usual procedure for parameterization development and also for inferring unknown
parameters is to tune the parameterization or the parameters in order to decrease root-mean-square
errors between the model integrations and the observations starting from initial conditions that
are close to the natural system state at a given time. For short times, the model state is close to
the natural system state, so that model sensitivity should follow natural system sensitivity (Pulido
2014). However, systematic model errors drift the model state from the natural system trajectory
for long times (from 5-days); therefore the model and the natural system differ substantially. In
this context, observed natural system sensitivity is not useful to constrain model sensitivity, and
root-mean-square errors give limited information for model improvement.

Data assimilation techniques have been proposed as a method for estimating model parameters
(Ruiz et al. 2013a; Aksoy 2015) and for model development (Pulido et al. 2016; Lang et al. 2016).
In a data assimilation system, the model state is recursively pushed towards the observations at

the analysis times so that one expects that model sensitivity can be constrained from the observed
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natural system sensitivity. Under the presence of multiple sources of model errors in a realistic
scenario, the estimation of model parameters with data assimilation techniques compensates not
only model errors due to the physical process represented in that parameterization but also other
sources of model errors. For instance, Ruiz and Pulido (2015) show that estimating the parameters
associated with moist processes in an atmospheric general circulation model compensates not only
errors from convection but also errors produced by an incorrect representation of boundary layer
dynamics. Therefore, the estimated parameters are optimal for that particular combination of
model errors and for that particular point of the model state. In other situations, that estimated set
of parameters will not represent the natural system sensitivity.

Klinker, and Sardeshmukh (1992) examined the initial tendency errors, the differences between
model sensitivity and observed sensitivity during the first time step from the initial conditions.
Rodwell and Palmer (2007) show that systematic initial tendency errors can be useful to assess
climate models. Errors from different sources should be decoupled at initial times and they should
be localized close to the source locations. In a multi-scale system, the errors that dominate at initial
times are produced by fast processes. The model sensitivity feedback interactions associated with
slow processes are expected to be weak compared with fast processes so that they will not be easily
captured by initial tendency errors (Rodwell and Palmer 2007).

The predictability of a dynamical system is quantified by the growth rate of errors as the system
evolves. For chaotic systems, a small error in the initial conditions grows as the prediction range
increases. The average long-term exponential separation between two trajectories which initially
differ by an infinitesimal distance is given by the leading Lyapunov exponent. If the leading Lya-
punov exponent is positive, the system is chaotic — errors grow with time. The leading Lyapunov
exponent is a possible measure to quantify the predictability of the dynamical system. There is a

strong relation between the Shannon entropy and the Lyapunov exponents. For a dynamical sys-
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tem which has a sufficiently smooth probability distribution the Pesin identity holds, the sum of
the positive Lyapunov exponents is equal to the Kolmogorov-Sinai entropy (Pesin 1977; Eckmann
and Ruelle 1985). In this way, the permutation Shannon entropy can be considered as an upper
bound of the Lyapunov exponents (e.g. Bandt and Pompe 2002). Therefore, entropy is also a
useful quantity to characterize the predictability in the climate system.

Leung and North (1990) introduce Shannon entropy as a measure of the uncertainty in a climate
signal. They examine the similarities between a climate and a communication system. A state
in the climate system with large entropy would be unpredictable. There are many possible states
that are equally probable. Majda and Gershgoring (2011) propose to use information theory for
measuring model fidelity and sensitivity. They use the relative entropy to measure the distance
between the probability distribution functions (PDFs) of the natural system and of the numerical
model, assuming that both PDFs are Gaussian. Tirabassi and Massoller (2016) use symbolic time-
series analysis and mutual lag between time series at different grid points to identify communities
in climate data, i.e. sets of nodes densely interconnected in the network.

In the present work, we examine information theory measures as a tool to evaluate numeri-
cal models. We extend the concepts introduced by Majda and Gershgoring (2011) to the use of
Jensen—Shannon divergence (Grosse et al. 2002) computed with the ordinal symbolic PDFs. This
ordinal analysis is conducted using the Bandt and Pompe (2002) symbolic data reduction in the
signals, in particular, to determine the corresponding ordinal-based quantifiers, such as normalized
Shannon entropy and statistical complexity. They can be used to distinguish different dynamical
regimes and to discriminate clearly chaotic from stochastic signals (Rosso et al. 2007, 2012a,b).
By comparing information measures from time series of variables of a set of imperfect models
with information measures from observed time series, our aim is to find the imperfect numerical

model that is closest to the information measures of the natural system.
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Information measures of the two-scale Lorenz’96 system (Lorenz 1996) are evaluated using
ordinal symbolic analysis as a function of the “physical” parameters of the system: the constant
forcing and the interaction coefficient between the slow and fast dynamics. This two-scale system
is then considered as the natural system evolution, while the numerical imperfect model is the
one-scale Lorenz’96 (Lorenz 1996). We assume the small-scale processes cannot be represented
explicitly in this imperfect model, so that the effects of small-scale processes are parameterized
as a polynomial function which depends on large-scale variables. The information measures from
ordinal symbolic analysis are used to find the most suitable parameterization of the small-scale
processes. The information measures of the imperfect model should be as close as possible to
the information measure of the “natural system”, the two-scale Lorenz’96 system. We evaluate
whether the measures are suitable for parameter selection, this is, whether parameter changes have
enough sensitivity in the information measures, so that the optimal parameters could be properly
inferred from information measures.

Physical parameterizations in atmospheric or oceanic numerical models represent the subgrid-
scale physical processes, through functional dependences with the resolved variables. These re-
solved variables, that the parameterizations depend on, are slow large-scale variables; hence in
general the models lack from small-scale variability. Palmer (2001) suggested the use of stochas-
tic parameterizations to account for this lack of variability in the models. There are several works
in the last decade that show that both weather forecasts and climate predictions appear to benefit
from stochastic parameterizations. For instance, the ensemble prediction system of the European
Center for Medium-range Weather Forecasts (ECMWF) uses a stochastic kinetic backscatter algo-
rithm to improve the skill of ensemble forecasting (Shutts 2005). Convection processes have also
been proposed to be represented through stochastic parameterizations (Christensen et al. 2015).

Some climate features, such as the quasi-biennial oscillation, are better represented in models with
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stochastic parameterizations (Piani et al. 2004; Lott et al. 2012). Wilks (2005) showed that includ-
ing a stochastic parameterization in the Lorenz’96 system produces improvements compared to
deterministic parameterizations of both the model climatology and ensemble forecast verification
measures. Here, we evaluate whether the use of information measures is sensitive to stochastic
parameterizations and whether some of the noise variance parameters of stochastic parameteriza-
tions may be constrained by trying to reproduce with the model the information measures from

the observed time series.

2. Information measures for characterizing model dynamics

Chaotic dynamical systems are sensitive to initial conditions. These manifest instability every-
where in the phase space and lead to non-periodic motion, i.e. chaotic time series (Abarbanel
1996). They are unpredictable in the long term despite the deterministic character of the temporal
trajectory. In a system undergoing chaotic motion, two neighboring points in the phase space move
away exponentially. Let x| () and x(¢) be two such points, located within a ball of radius R at time
t. Further, assume that these two points cannot be resolved within the ball due to observational

error. At some later time ¢’ the distance between the points will typically grow to

[x1(+) = xa(t")| ~ [x1 () = Xa(t)| exp(A [t' —1]), (D

with A > 0 for chaotic dynamics, being A the leading Lyapunov exponent. When this distance at
time ¢’ exceeds R, the points become observationally distinguishable. This implies that instability
reveals some information about the phase-space population that was not available at earlier times
(Abarbanel 1996). Thus, under the above considerations chaos can be thought as an information

source.
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The information content of a system is typically evaluated via a PDF, P, describing the charac-
teristic behavior of some measurable or observable quantity, generally a time series 2" (7). Quan-
tifying the information content of a given observable quantity is therefore largely equivalent to
characterizing its probability distribution. This is often done with the wide family of measures
called information theory quantifiers (Gray 1990). We can define information theory quantifiers as
measures able to characterize relevant properties of the PDF associated with the time series which

can be generated from observations of a dynamical system or from model integrations.

a. Ordinal symbolic analysis

The evaluation of quantifiers derived from information theory, like Shannon entropy and sta-
tistical complexity, supposes some prior knowledge about the system; specifically, a probability
distribution associated to the time series under analysis should be provided beforehand. Although
for a physical quantum system, the concept of probability is uniquely defined; there are several
ways to define a probability distribution for a dynamical system. The traditional is the histogram,
the state space is partitioned into bins and by counting the number of times N; that the trajectories
of an ensemble pass through the i-bin at a given time, the probability is, in this way, defined as
pi = N;/N, where N is the total number of trajectories. This symbolic sequence can be regarded
to as a non causal coarse-grained description of the time series under consideration.

An alternative definition is given with time sequences. Suppose we use a sequence of L time
steps and we label the bins, then in L time steps the trajectory passes through L bins, and we
can form a symbolic sequence of length L. In the symbolic sequence, each symbol from a finite
alphabet represents a bin, and the pattern is formed by the sequences of bins, which visits the

trajectory in the L time steps. Counting the occurrence of each pattern, over the total number of
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sequences we determine the probability distribution. If we diminish the size of the bins, in the
limit we can derive from this probability the Kolmogorov-Sinai entropy (Schuster and Just 2006).

For some dynamical systems, the information measures determined from bin-symbolic analysis
are sensitive to the way the bins are generated (Bollt et al. 2000). Bandt and Pompe (2002) in-
troduced a simple and robust symbolic methodology that takes into account time causality of the
time series —a causal coarse-grained methodology— by comparing neighboring values in a time
series. In this work, we refer as ordinal symbolic analysis to the Bandt and Pompe methodology.
The symbolic data are: (i) created by ranking the values of the series; and (ii) defined by reorder-
ing the embedded data in ascending order, which is equivalent to a phase-space reconstruction
with embedding dimension (pattern length) D. In this way, the diversity of the ordering symbols
(patterns) derived from a scalar time series is quantified.

The appropriated symbolic sequence arises naturally from the time series, and no system-based
assumptions are needed in Bandt and Pompe methodology. In fact, the necessary “partitions” are
devised by comparing the order of neighboring relative values rather than by apportioning ampli-
tudes according to different levels. This technique, as opposed to most of those in current practice,
takes into account the temporal structure of the time series generated by the physical process under
consideration. As such, it allows us to uncover important details concerning the ordinal structure
of the time series (Rosso et al. 2007) and can also yield information about temporal correlation
(Rosso and Masoller 2009a,b).

The “ordinal patterns” of order (length) D in the Bandt and Pompe methodology are generated

by

(8) = (Xs—(D—1)s Xs—(D—2)s - - -1 Xs—1,Xs) (2)
which assigns to each time s the D-dimensional vector of values at times s — (D —1),...,s — L,s.
By “ordinal pattern” related to the time (s), we mean the permutation @ = (ro,ry,...,rp—1) of
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[0,1,...,D— 1] defined by
xs—rD,l S xs—rD,z S U S xs—rl S xs—ro . (3)

In this way the vector defined by (2) is converted into a unique symbol w. We set r; < r;_; if
Xs—r, = Xs—r; , for uniqueness, although ties in samples from continuous distributions have null
probability.

Then, the occurrence of each symbolic pattern is counted in the whole time series. The prob-
ability of each symbol, 7;, is the number of occurrences of the pattern over the total number
of analyzed sequences in the time series. The Bandt and Pompe PDF (BP-PDF) is given by

P={p(m),i=1,...,D}, with

_ #{s[s<M—(D—1); (s)is of type ; }

p(m) M—(D—1) !

“)

where # denotes cardinality and M is the time series length.

In order to illustrate ordinal symbolic analysis, let us consider a simple example: a time se-
ries with seven (M = 7) values 2" = {4,7,9,10,6,11,3} and compute the BP-PDF for D = 3.
In this case, the state space is divided into 3! partitions so that 6 mutually exclusive permuta-
tion symbols are considered. The triplets (4,7,9) and (7,9, 10) represent the permutation pattern
{012}, since they are in increasing order. On the other hand, (9,10,6) and (6, 11,3) correspond
to the permutation pattern {201} since x;1» < x; < x;41, while (10,6, 11) has the permutation
pattern {102} with x; 1| < x; < x;,42. Then, the associated probabilities to the 6 patterns are:
p({012}) = p({201}) = 2/5; p({102}) = 1/5; p({021}) = p({120}) = p({210}) =0.

The existence of an attractor in the D-dimensional phase space is not required in the ordinal
symbolic analysis. The only condition for the applicability of the method is a very weak stationary

assumption. For £ < D, the probability for x; < x;,4 should not depend on ¢.
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b. Entropy, statistical complexity and Jensen-Shannon divergence

Entropy is a basic quantity with multiple field-specific interpretations. For instance, it has been
associated with disorder, state-space volume, and lack of information (Brissaud 2005). When
dealing with information content, the Shannon entropy is often considered as the foundational
and most natural one (Shannon 1948; Shannon and Weaver 1949). It is a positive quantity that
increases with increasing uncertainty and is additive for independent components of a system.
From a mathematical point of view, Shannon entropy is the only information measure that satisfies
the Kinchin axioms (Kinchin 1957).

Let P ={p;;i=1,...,N} with ng: | pi = 1, be a discrete probability distribution, with N the
number of possible states of the system under study. The “Shannon” logarithmic information
measure is defined by

N
S[P = - ;piln (pi) - 5)

=
This can be regarded to as a measure of the uncertainty(lack of information) associated to the
physical process described by P. For instance, if S[P] = Sy, = 0, we are in a position to predict
with complete certainty which of the possible outcomes i, whose probabilities are given by p;,
will actually take place. Our knowledge of the underlying process described by the probability
distribution is maximal in this instance. In contrast, our knowledge is minimal for a uniform
distribution P, = {p; = 1/N,i=1,...,N} since every outcome exhibits the same probability of
occurrence. Thus, the uncertainty is maximal, i.e., S[P,] = Spmax = InN. In the discrete case, we

define a “normalized” Shannon entropy, 0 < J7Z < 1, as
%[P] - S[P]/Smax . (6)

Statistical complexity is often characterized by a complicated dynamics generated from rela-

tively simple systems. Obviously, if the system itself is already involved enough and is constituted

11
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by many different parts, it may clearly support a rather intricate dynamics, but perhaps without
the emergence of typical characteristic patterns (Kantz et al. 1998). Therefore, a complex system
does not necessarily generate a complex output. Statistical complexity is therefore related to struc-
tures hidden in the dynamics, emerging from a system which itself can be much simpler than the
dynamics it generates (Kantz et al. 1998).

We follow the original idea for statistical complexity introduced by Lépez-Ruiz et al. (1995).
A suitable complexity measure should vanish both for completely ordered and for completely
random systems and it cannot only rely on the concept of information (which are maximal and
minimal for the above mentioned systems). It can be defined as the product of a measure of
information and a measure of disequilibrium, i.e. some kind of distance from the equiprobable
distribution of the accessible states of a system (Lopez-Ruiz et al. 1995; Lamberti et al. 2004).

The statistical complexity measure to be used here (Lamberti et al. 2004; Rosso et al. 2007) is

defined through the functional product form
¢[P] = Qus[P.F]- H[P] @)

of the normalized Shannon entropy .77, see (6), and the disequilibrium Qjs. It is defined in terms

of the Jensen-Shannon divergence Djs[P, P.|,

Qjys|P,P.] = Qo-Dys[P,P] = Qo-{S[(P+PF.)/2]—S[P]/2—S[P]/2}, ®)

where Q is equal to the inverse of the maximum of Djg[P, P,| which is obtained when one of the
components of P is one and the remaining are zero. Therefore, the disequilibrium Q;s measures
the normalized distance of the probability distribution of the system under study P and the uniform
distribution P, which is the equilibrium PDF.

For a given value of 7, the range of possible ¢ values varies between a minimum %,;,, and

a maximum %, , restricting the possible values of the statistical complexity measure (Martin

12
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et al. 2006). The planar representation entropy-complexity plane, 7 x €, is an efficient tool to
distinguish between the deterministic chaotic and stochastic nature of a time series since the per-
mutation quantifiers have distinctive behaviors for different types of dynamics (Rosso et al. 2007).
This tool has also been used for visualization and for a characterization of different dynamical
regimes when the system parameters vary (Zanin et al. 2012).

Finally, we consider a measure for model evaluation against the observed time series. A measure
of the distance between the probabilities from the model and observed time series. This concept
has been used earlier by Majda and Gershgoring (2011) who called it model fidelity. They use the
Kullback-Leibler relative entropy to measure the distance between the two probabilities. Arnold et
al. (2013) evaluated the use of Hellinger distance. They found similar results using the Hellinger
distance and Kullback-Leibler distance in the Lorenz’96 system. We use the Jensen-Shannon
divergence to measure the distance between the probabilities to be coherent with the information
theory quantifiers used in this work and because it is a symmetric positive-definite quantity. The
square-root of the Jensen-Shannon divergence satisfies metric properties and triangle inequality
(Lin 1991).

Assuming Py and Py are the corresponding BP-PDFs from the model time series and from
the observed time series respectively, the Jensen-Shannon divergence is defined as a symmetric

measure of the Kullback-Leibler divergence,
Dys[Pu,Po) = Y. p¥'in(p}/p?)+p?n(p? /p}) = Y.(p —p?) (P} /p7), 9
it vanishes when p{-” = pl.O for all i. It can also be expressed in terms of the Shannon entropy (5):
Dys[Pu,Po]l = S[(Pu+Po)/2] —S[Pul/2—S[Po]/2 . (10)

To evaluate (10), we determine the probability of the observed time series Py and of the differ-

ent model time series Py using ordinal symbolic analysis. The Jensen-Shannon divergence is a

13
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measure of distance between two PDFs, Py; and Py, so that a small Jensen-Shannon divergence
indicates a model PDF close to the observed PDF. The best model or the optimal parameters are

the ones whose the time series gives the smallest Jensen-Shannon divergence.

3. Description of the numerical experiments

In the numerical experiments, we evaluate the potential of ordinal symbolic analysis to select
subgrid-scale parameterizations using the integration of the two-scale Lorenz’96 system (Lorenz
1996) as the natural system evolution. The equations of this system are given by a set of N

equations of large-scale variables X,

3 X1 (X =X + Xy = F—— Y Y;; (11)
J=(M/N)(n—1)+1
where n = 1,...,N; and a set of M equations of small-scale variables Y, given by
dy, hc
—r TP Yt (V2 =Yoo t) ¢ Yo = == Xine[(n—1)/ (/M) 41 5 (12)

where m = 1,..., M. Note that both sets of equations (Egs. (11) and (12)) are in a periodic domain,
thatis Xo =Xy, X1 =Xy_1and Yo =Yy, Y1 = Yyy+1, Yo = Yy10.

Equations (11) and (12) are essentially the same but with different scales. They have coupling
terms between them, the equations of small-scale variables, (12), are forced by the local (closest)
large-scale variable. The equations of large-scale variables, (11), are forced by the external forcing
F, and by the averaged small-scale variables which are located around the large-scale variable in
consideration.

Lorenz (1996) suggested this simple model as a one-dimensional atmospheric model with two
distinct time scales in a latitudinal circle with interactions between the two scales and he used
it to illustrate atmospheric predictability issues. In the experiments, we use the standard set of

constants: N = 8, M = 256, coupling constant 7 = 1, time-scale ratio ¢ = 10, and spatial-scale

14
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ratio b = 10 (unless stated otherwise). Note that setting 4 = 0 in (11), we recover the one-scale
Lorenz’96 system.

In reality, the atmospheric numerical models cannot represent the small-scale variables associ-
ated with convection processes, small-scale waves, etc., so that the effects of the small-scale vari-
ables on the large-scale equations must be parameterized in the numerical models through forcing
terms with functional dependencies of only the large-scale variables and a set of free parameters.

Thus, the equations of the imperfect model are

dxM

- LG - X)X = Ga(Xy' a0, a) ; (13)
where n = 1,...,N and XM represents the variables of the imperfect model. The function
G.(XM ay,--- ,ay) is a parameterization of the small-scale processes and the forcing term, it seeks

to mimic the right hand side term of (11). The a; are free parameters.
Two representations of the forcing term are examined in this work: a) a deterministic parame-

terization given by a polynomial function,
M a My j
GVl(Xn 7“07"'7‘1]) = ZaJ(Xn )]; (14)
Jj=0

and b) a stochastic parameterization defined in Wilks (2005) by a polynomial function and a

stochastic component given by realizations of a first-order autoregressive process

J
Gu(X), ao,-++,a5,0,0) = Y a;- (X)) + nu(r) ; (15)
j=0
where
M(t) = ¢ M (t— A1) + o (1—07)2 w(t) (16)

¢ is the autoregressive parameter, Vy is a realization of a normal distribution with zero mean and
unit variance, and o is the standard deviation of the process. Both ¢ and o, apart from a, are free

parameters.
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The Lorenz’96 system was integrated using a Runge-Kutta of fourth order, with an integration
step of 6 = 0.001. In what follows the time resolution of the time series or the observational time
resolution is taken to be 0 = 0.05, which considering the growth rates of the system, it represents
6 hours in the atmosphere and so it is able to capture the instability growth (Lorenz 1996). To
avoid spin-up behavior, the state is started from a random initial condition and it is integrated by
10° observational times (this corresponds to 5 - 10° time steps). The resulting state is used as the
initial condition and it is integrated further by N; = 10° observational times (i.e. Ny is the time
series length) which are used to compute the information measures.

In order to evaluate the imperfect model, we use an “observed” time series of a single large-
scale variable from the natural system evolution, the two-scale Lorenz’96 system. This is, we
assume that the large-scale is the only information observed so that signals from a single large-
scale variable are used in the ordinal symbolic analysis. The small-scale dynamics is neither
modeled nor observed, except in the “true” state integration which is conducted with the two-scale
Lorenz’96 and considered as the natural system trajectory.

In all the experiments, we use the ordinal symbolic analysis to determine BP-PDFs associated
with the time series of the dynamical system and then the information quantifiers, normalized
Shannon entropy (6), statistical complexity (7) and Jensen-Shannon divergence (10), are com-
puted. The length of the pattern for the ordinal analysis is taken to be D = 6. This gives a total of
D! = 6! =720 possible ordinal symbolic patterns, which clearly satisfy the condition N; > D! for
robust statistics (Rosso et al. 2007). The choice of the length of the pattern is a compromise deci-
sion, a longer D gives a more casual and higher resolution PDF, but it requires a longer time series
for accurate statistics. We took D = 6 as in Rosso et al. (2007); Serinaldi et al. (2014). However,
note that because of the short climate time series available, Tirabassi and Massoller (2016) used

D = 3 for monthly climate time series with meaningful results.
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In a first set of experiments, we explore the two-scale Lorenz’96 system with the information
quantifiers: Shannon entropy (6) and statistical complexity (7). Different dynamical regimes are
uncovered as the forcing and the coupling coefficient are varied.

A second set of experiments focuses on model fidelity, in which we determine the BP-PDFs of
the observed time series Py and of the modeled time series Py, and so (10) is evaluated. Observed
and modeled time series are completely independent including the initial condition. They are
both assumed to be on the attractor of the dynamical system (after the spin-up integration). The
synthetic observed time series is in the second set of experiments generated with an integration of
the one-scale Lorenz 96 system and a set of prescribed parameter values. Then we can evaluate
the sensitivity of the information quantifiers to the model parameters for integration of the one-
scale Lorenz "96 system with different parameter values. In particular, we expect a minimum in the
Jensen-Shannon divergence when the model parameters are set at the “true” values (the ones used
to generate the observations). The evaluated parameterizations in this perfect model framework
are a deterministic parameterization, which consists of a quadratic polynomial function (14), and
a stochastic parameterization, which consists of a quadratic polynomial function and a first-order
autoregressive process (15).

To estimate the optimal parameter values, a genetic algorithm was implemented (Charbonneau
2002; Pulido et al. 2012). As in Pulido et al. (2012), the genetic algorithm is able to find the global
minimum even in the presence of multiple local minima, however it presents slow convergence.
Therefore, only 5 generations were evolved. Then, the newUOA optimization (Powell 2006) was
applied, using as initial guess parameters the ones estimated with the genetic algorithm. It is
an unconstrained minimization algorithm which does not require derivatives. Both, the genetic
algorithm and newUOA are suitable for control spaces of up to a few hundred dimensions. The

Jensen-Shannon divergence is used as the minimization function in the optimization method.
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The third set of experiments explores the Jensen-Shannon divergence for imperfect models. In
this case the observed time series is obtained from a ’nature’ integration of the two-scale Lorenz
"96 system, and we seek to reproduce the dynamics of the system with integrations of imperfect
models generated from one-scale Lorenz 96 systems with deterministic and stochastic parame-
terizations. From these experiments we determine a set of optimal values using the mentioned
optimization method for a deterministic and stochastic parameterization that seek to represent the
small-scale dynamical effects of the two-scale Lorenz *96 system. These optimal parameter values
are used in long-term climate prediction experiments to examine whether the optimal parameters

have a positive impact on climate measures.

4. Results and discussion

a. Experiments with the two-scale Lorenz '96 system

First, the ordinal symbolic analysis is applied to the integration of what we consider as the nat-
ural system evolution, the two-scale Lorenz *96 system. Integrations varying the forcing F' were
conducted with a resolution of 6F = 0.01, and the ordinal symbolic analysis is applied to each
integration (i.e. time series of the Lorenz *96 variable X;). Figure 1 shows the information quan-
tifiers: permutation entropy (7, Fig. 1a), permutation statistical complexity (%', Fig. 1b). From
Figs. la and 1b, four regions with different dynamical regimes are found (which are delimited by
vertical dotted lines): i) For small external forcing, 0 < F < 3.75, the system is dissipative and so
after the spinup time the entropy goes to zero. ii) A narrow region, between 3.75 < F < 4.5, with
high permutation entropy and high permutation statistical complexity. iii) An intermediate region,

between 5 < F < 12, with small entropy 77 = 0.2 — 0.23 and similar complexity. v) Finally a
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region for larger F, F > 13, which has large entropy 7 > 0.4 but relatively small complexity
(¢ <0.4).

Figure 1c shows the causal entropy-complexity plane (.7 x %) which combines the entropy and
statistical complexity measures. In this plane, the statistical complexity has a minimum and max-
imum value as a function of entropy (% and %, respectively), which are the upper and lower
continuous curves in Fig. Ic, so that all the possible dynamical regimes are limited to the area
between these curves. The four dynamical regimes can be clearly distinguished in the entropy-
complexity plane. The dissipative regime is located at the extreme of null entropy and complexity.
The quasi-periodic dynamical regime (iii) with low entropy and maximal statistical complexity
is denoted by the triangles that are close to the upper curve which represents the maximal sta-
tistical complexity. The large F' chaotic regime (iv) which has large entropy and relatively small
complexity is represented with gray circles. The gray triangles correspond to the narrow region
between 3.75 < F' < 4.5 with large entropy and maximal complexity (at the %, curve). Since the
system is purely deterministic, there are no dynamical regimes in the large entropy region, close

to 2 = 1, which would represent a purely stochastic system (Rosso et al. 2007).

Figure 2 shows the time series, resulting from the dynamical regimes obtained from the two-
scale Lorenz 96 dynamical system (except the dissipative regime) identified using the information
quantifiers, for ' =4 (Figure 2a), F =7 (Figure 2b) and F' = 18 (Figure 2c). These represent quasi-
periodic motion with high entropy, quasi-periodic motion with low entropy and chaotic motion,
respectively.

Figure 3 shows the information quantifiers from integrations of the two-scale Lorenz ’96 system

varying the coupling constant 4. The external forcing is fixed to F' = 4,6, 18. For h — 0 we recover
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the measures for the one-scale Lorenz 96 system since the two sets of equations, (11) and (12),
are uncoupled. In that case, the permutation entropy and the permutation statistical complexity
scales with the forcing. For F = 4, there is a peak of entropy and complexity when the coupling
constant 4 is close to 1, which was the regime already found in Fig. 1 with complexity close to
Gmax (note that in those integrations 7 = 1). As we increase F to 6, the large complexity regime
is found for larger coupling between the two scales, for & between 1.4 and 2. On the other hand,
small entropy and complexity is found for the F = 18 for coupling constants between 1 and 2. For
larger coupling constants, a regime with high disordered patterns is found (small complexity and
large entropy). For coupling constants close to 5, a regime with high statistical complexity appears
to emerge for the F' = 18 but we did not explore integrations for larger coupling constants. Some
of the dynamical regimes that appear to emerge from the Lorenz 96 system varying the coupling

constant and varying stochastic noise will be investigated further in a follow-up work.

b. Perfect-model experiments

To evaluate the potential of information quantifiers to distinguish between time series generated
with different parameterizations, we conducted a so-called twin experiment. We consider the one-
scale Lorenz "96 system, (13), with a known parameterization as the natural system evolution to
generate the observed time series and then we evaluate the information measures for integrations
of the one-scale Lorenz '96 system with varying parameters using the hybrid optimization algo-
rithm, with genetic algorithm and newUOA methods. This is an experiment where the model is
assumed perfect, and a set of prescribed parameters are used to generate the observations. Then,

the optimization method is used to estimate the parameters through the differences in the observed
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and modeled time series. In this way, we can evaluate whether the Jensen-Shannon divergence
measure determined with the ordinal symbolic analysis is able to estimate the “true” parameters.

The first perfect model experiment uses a deterministic quadratic parameterization, (14). The
true parameter values are set to af, = 17.0, @} = —1.20, d5 = 0.035 (¢ superscript denotes true
values). These values are expected to be a representative deterministic parameterization of the
two-scale model (Pulido et al. 2016). The integration with the true parameters is considered as the
observational time series. The Jensen-Shannon divergence, (10), and Hellinger distance (Arnold
et al. 2013) are minimized through the hybrid optimization algorithm which seek for the optimal
model parameter values. The symbolic ordinal analysis is applied to each model and observational
time series to evaluate the Jensen-Shannon divergence, (10), and Hellinger distance. The optimal
parameter values obtained with the hybrid optimization algorithm were ap = 17.1, a; = —1.18
and a; = 0.032 using the Jensen-Shannon divergence and ay = 16.9, a; = —1.17 and a, = 0.031
using the Hellinger distance. Both distance measures give accurate estimates. In all preliminary
experiments both distance measures performed similarly well, so that in what follows we only
show the experiments with Jensen-Shannon divergence. This twin experiment shows that the
information measures can be used to determine optimal parameters, the estimated optimal values
are very close to the true parameter values.

The sensitivity in the Jensen-Shannon divergence to the parameters is shown in Fig. 4 varying
each of the parameters and the other two parameters are fixed to the optimal values (which were
obtained with the hybrid optimization method using Jensen-Shannon divergence). The optimal
parameter is very well defined in the three parameters. The minimum of the Jensen-Shannon di-
vergence is clearly located at the true parameters. One weak point of the measure is that it presents
noise, including several local extremes. This affects the convergence speed of optimization meth-

ods.

21



457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

A second perfect-model experiment takes a stochastic parameterization, (15), for the polyno-
mial coefficients we use the same true values as in the previous experiment, a6 =17, a’] =—-1.2,
a, = 0.035 but we now include a noise forcing term with standard deviation ¢’ = 1. Two op-
timization experiments with autoregressive parameters ¢ = 0 and ¢’ = 0.984 were conducted.
These two extreme values were taken by Wilks (2005) to represent serially independent and se-
rially persistent stochastic forcing, respectively. The resulting optimal parameter values of the
hybrid optimization algorithm are shown in Table 1. The combined estimation of deterministic
parameters and the stochastic parameter o gives rather good estimates. The stochastic parameter
is slightly underestimated 10-20% in the two optimization experiments.

Once the optimal parameters for the stochastic parameterization are estimated, we then evaluate
the sensitivity of Jensen-Shannon divergence measure with respect to this observational time se-
ries varying ¢ values in the model integrations. Figure 5 depicts the Jensen-Shannon divergence
as a function of ¢ parameter for autoregressive parameters of ¢’ = 0 and ¢’ = 0.984 (the other
parameters are fixed to the optimal values that were estimated with the hybrid optimization algo-
rithm). A rather narrow negative peak is found in Fig. 5 close to the true parameter values. The

0" = 0.984 case (Fig. 5b) appears to be better conditioned.

c. Imperfect-model experiments

The usual procedure to infer unknown parameters of a parameterization scheme in an imper-
fect, coarse-grained, model is to tune the unknown parameters and to evaluate the response of
the changes in the parameters on the root-mean-square error, which measures the differences be-
tween the evolution of some representative variables and the corresponding observed variables (or

reanalysis data). The optimal parameters are the ones that minimize the root-mean-square error.

22



480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

We conducted a similar experiment with synthetic observations but using information measures,
i.e. Jensen-Shannon divergence, instead of root-mean-square error measures. The advantage of
the ordinal symbolic analysis is that as it does not depend on the amplitude but on the “shape”
of the patterns, it is not sensitive to possible systematic model errors. The analysis is performed
in a sufficiently long trajectory (10° observational times). The probability of all the possible pat-
terns is composed by a large number of cases and it is expected to be independent of the initial
condition (the spin-up time is not considered in the statistics). The observed time series corre-
sponds to a single variable taken from a model integration of the two-scale Lorenz 96 system
which is started from random initial conditions and the spinup period is removed. The model time
series 1s also generated from random initial conditions and integrating the one-scale Lorenz "96
system. Therefore, the two time series are completely independent—they do not have a common
initial condition. In this sense, the Jensen-Shannon divergence is a global measure of the system
dynamics.

Since we deal with an imperfect model, which does not represent explicitly the small-scale
dynamics, the parameter estimation is not a twin experiment in which we know the “true” optimal
parameters, so that the existence of a single set of optimal parameters is not a priori ensured.

We conducted two extreme experiments, one with the natural system evolution set for an external
forcing of F =7, which results in quasi-periodic motion, and the other for a forcing of F = 18,
which results in chaotic dynamical behavior. As mentioned, the ordinal symbolic analysis may
be applied to chaotic and quasi-periodic time series as long as the weak stationary assumption is
satisfied.

The hybrid optimization algorithm was applied to the two observed time series. The genetic
algorithm restricts the search for optimal values to the region delimited by the maximum and

minimum values stated in Table 2. The parameter limits (maximum and minimum values) of the

23



504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

search region were taken according to the values obtained by Pulido et al. (2016). In the case that
the resulting optimal value of the genetic algorithm is at a boundary of the region, it is an indicative
that the region is too narrow in that parameter and that the limit value should be changed. The
estimated optimal values with the hybrid optimization algorithm for F =7 and F = 18 are also
shown in Table 2.

The Jensen-Shannon divergence sensitivity to each of the parameter values for the case F = 7,
varying one parameter value and fixing the other two to the optimal values which resulted from
the hybrid optimization algorithm, is shown in Fig. 6. Parameters exhibit strong sensitivity in
a small region close to the optimal values. These sensitivity experiments are produced after the
optimization, with independent integrations that are not related to the optimization method. For
some parameter values, the Lorenz 96 model presents numerical instabilities. A uniform time
series 1s assigned for these cases and so a delta PDF results, which in turn gives a large Jensen-
Shannon divergence.

The sensitivity of the Jensen-Shannon divergence to each of the parameters for the case of
F = 18 is shown in Fig. 7, while the other two parameters are fixed at the optimal values. The
parameter ag exhibits a reasonable sensitivity around the optimal value. On the other hand, a
and a, show several peaks so that they are more difficult to be precisely estimated, however, the
genetic algorithm is clearly able to find the global minimum even in the presence of these local

minima (Fig. 7c).

As the information quantifiers give useful information on the optimal parameter values of the
deterministic parameterization, we now turn our attention to stochastic parameterizations for the

imperfect case. We include the first-order autoregressive process (16) in the parameterization (15),
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and search with the hybrid optimization algorithm for the optimal parameter values including the
optimal standard deviation o, (ag, a;, a2, ©), and again we only explore for two fixed autore-
gressive parameters ¢ = 0 and ¢ = 0.984. The resulting optimal parameter values of the hybrid
optimization algorithm are shown in Table 2.

The Jensen-Shannon divergence as a function of the standard deviation is depicted in Fig. 8 for
the optimal deterministic parameter values (shown in Table 2). For an external forcing of F =7 a
smooth function is found with a clear minimum (see Fig. 8a). The minimum is found at o = 0.32
for ¢ = 0. Similar values of the Jensen-Shannon divergence are found at o = 0.15 for ¢ = 0.984.
Both sets of values are suitable for representing the stochastic process that mimics the effects
of Lorenz’96 small-scale variables. Note that the Jensen-Shannon divergence for the optimal
o value is smaller than the one for o = 0 so that the stochastic parameterization improves the
representation of small-scale variables. This is also valid when both deterministic and stochastic
parameterizations have their own optimal parameters.

For F = 18 Jensen-Shannon divergence has smaller values than F = 7. This means that the
parameterization is able to represent better the effects of the small-scale variables for this case due
to the chaotic dynamics. The divergence depicts a noisy dependence, but a constrained optimal
range of the standard deviation is still clearly identified from Fig. 8b. The minimum is at ¢ = 4.67
for the ¢ = 0 experiment. Similar Jensen-Shannon divergence values are also found for the ¢ =
0.984 experiment with a minimum at ¢ = 2.12.

To evaluate the information quantifiers as a method for model selection. We conducted an ex-
periment in which we assume that the model has different parameterizations, changing the order
of the polynomial function in the deterministic parameterization and for some experiments adding
the stochastic process (16). A total of eight optimization experiments with different parameteri-

zations were conducted for an observed time series taken from the two-scale Lorenz 96 system
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with F' = 18. For each parameterization, the set of optimal parameters estimated by the hybrid
optimization algorithm are stated in Table 3. The square root of Jensen-Shannon divergence for
the optimal parameters is also shown in the Table. The best parameterization is the one that gives
the minimal Jensen-Shannon divergence from the observed PDF. The quadratic polynomial pa-
rameterization is the best deterministic one. Interestingly, the stochastic parameterizations present
a significantly better performance with this information measure. The higher-order polynomial
terms are very sensitive to small changes in the variables and parameters and for some parameter
values they produce numerical instabilities in the Lorenz 96 model (Pulido et al. 2016). Indeed,
the optimization experiment with the fourth-order polynomial stochastic parameterization did not
converge towards optimal parameter values because of these ubiquitous numerical instabilities (to
overcome this, careful manual changes in the parameter limit values would be required).

The forcing given by the parameterizations with optimal parameters for the ' = 18 experiments,
including the quadratic deterministic, and the quadratic stochastic parameterizations with ¢ = 0
and with ¢ = 0.984 are shown in Fig. 9 (Panels (a), (b) and (c) respectively). The forcing given
by the small-scale variables in the two-scale Lorenz *96 is also shown in the Figure (gray dots).
We emphasize, this “true” forcing is only shown as the purpose of evaluation of the optimization
experiments, but the time series of a single large-scale state variable is the only source of infor-
mation used in the optimization experiments. The simple polynomial parameterizations with fixed
standard deviation represent rather well the complex forcing dependencies given by the small-
scale variable. However, they are obviously unable to represent the dependence of the standard
deviation with the value of the state variable particularly at the tail (large X values) and with the
dX /dt > 0 and dX /dt < 0 branches of the forcing, see Crommelin and Vanden-Eijnden (2008);

Pulido et al. (2016).
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As an independent measure of the climatology of the model with optimal parameters, we use
the classical histogram PDF. They were computed from the whole integration with the different
optimal parameter values. Figure 10 shows the histogram PDF for the nature integration for F = 18
and the ones with the optimal parameters for the quadratic deterministic parameterization (dashed
line) and for the stochastic parameterizations using ¢ = 0 (dotted line) and ¢ = 0.984 (gray line).
A very good agreement between the true histogram PDF and the model PDF is achieved. The

stochastic parameterizations give a slightly better agreement to the true histogram PDF.

5. Conclusions

Ordinal symbolic analysis only depends on the repetition of patterns within a time series. If it
is combined with information measures, they represent a useful framework to evaluate models, in
particular unresolved processes of multi-scale models. Since ordinal symbolic analysis does not
depend directly on the state, the quantities can be used for long time intervals (time series) even
in the presence of model error. The ordinal symbolic analysis is used in this work for long time
series and it accounts for the model fidelity with strong sensitivity to the parameters of the subgrid
parameterization which represents the small-scale processes.

Although stochastic parameterizations appear to give improvements in the atmospheric numeri-
cal models, the tuning of stochastic parameters represents a challenge. On-line parameter estima-
tion techniques as Kalman filtering present difficulties estimating these stochastic parameters even
for small and intermediate systems. DelSole and Yang (2010) show that it is not possible to con-
strain stochastic parameters with ensemble-based Kalmar filter augmenting the model state with
the stochastic parameters. Ruiz et al. (2013b) show that a separate adaptive inflation treatment
is required for the parameter covariance to avoid its collapse. Pulido et al. (2016) show that the

time variability given by Kalman filtering parameter estimates is not useful to constrain stochastic
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parameters in a subgrid parameterization. In this work, we show that information measures from
ordinal symbolic analysis are useful for tuning stochastic parameters with promising results.

This work evaluates the sensitivity of the parameters to the information measures, which is use-
ful for model selection. Furthermore, for parameter optimization a hybrid optimization technique
using a genetic and newUOA algorithms was implemented in this work for low dimensional mod-
els. For some cases, the information measures based on the ordinal symbolic analysis do not give
smooth dependencies with the parameters. This may be a problem for traditional gradient descent
optimization methods. For parameter estimation in high-dimensional models more sophisticated
optimization techniques suitable for noisy cost functions, like simulated annealing, are required
to minimize the Jensen-Shannon divergence for the probability distributions of observations and
an imperfect model. The evaluation of optimization techniques in high-dimensional models with
information measures will be examined in a follow-up work.

The proposed parameter estimation method offers an alternative framework to complex data
assimilation systems which couple model state to observations. On the other hand, in the proposed
method the model time series is generated independently of the observed state of the system. The
model state is assumed to be in its own model attractor (which is not necessarily the one from
nature). Only partial observation of the system is needed, indeed the observed time series may be
a single relevant variable or a small set of variables. The information measures could be applied
to a set of free integrations from different climate models or a set of free integrations from a single
climate model with different parameterizations or parameters, to evaluate from an observed time
series, which climate model or parameterization give the most accurate results—the closest PDF
to the observed PDF.

This work evaluates the information measures with the Lorenz’96 system, which is a small

model with 8 — 256 variables. Two major points need to be evaluated with more realistic models,
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the impact of a higher-dimensional state space on the information measures, and the length of the
time series needed to compute the probability distributions. The length of the time series used in
this work would represent about 70 years in the atmospheric time scale. It depends on two factors,
the required time resolution and the length of the pattern used for the ordinal symbolic analysis.
The time resolution used in this work is related to the time-scale of the resolved large-scale pro-
cesses, and indeed the used time series corresponds to a large-scale variable. The length of the
sequence is taken to be six in this work, as used in other applications Sippel et al. (2016); Seri-
naldi et al. (2014). However, Tirabassi and Massoller (2016) used three for monthly climate time
series (which are of limited length) with meaningful results. The way to combine the information
measures of different variables for high-dimensional problems needs to be explored.

The information measures can deal with weak observational noise (Rosso et al. 2007), how-
ever as expected Shannon entropy gives a maximum if the time series is stochastic without
correlations— completely dominated by white noise. For the cases with strong observational
noise, the signal may not be useful for analyzing fast processes, but averaging the time series and
applying ordinal symbolic analysis in longer time steps may give useful information for slower

physical processes.
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ao ai a (o

True Values | 17.0 -1.20 0.035 1.0

or =0 170 -1.17 0.031 0.82
or=0984 | 17.0 -1.19 0.034 0.88
764 TABLE 1. Values of the parameters (a;, i degree of the polynomial term and standard deviation, &) for the

75 quadratic stochastic parameterization in the perfect-model experiment. The true values correspond to the values
7 used to generate the observations. The optimal values obtained with the hybrid optimization algorithm for ¢* =0

77 and ¢’ = 0.984 experiments.
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Coef F=17 F=18

Min Max Det ¢=0 ¢=0984 | Min Max Det ¢0=0 ¢=0984

ag 2.0 8.0 5.79 5.78 6.97 140 19.0 17.7 18.5 17.1
aj -3.5 00 -279 -1.76 -2.18 -3.0 0.0 -1.19  -1.28 -1.26
a 0.0 0.8 0.50 0.22 0.25 0.0 0.5 0.038  0.039 0.049
c 0.0 2.0 0.32 0.15 0.0 5.0 4.67 2.13

768 TABLE 2. Values of the parameters (a;, i degree of the polynomial term and ¢). The maximum and minimum
769 values used to constrain the optimization and the optimal values obtained with the hybrid optimization algorithm

70 corresponding to the deterministic (Det), ¢ = 0 and ¢ = 0.984 experiments.
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ap ap a az ag o m
Linear | 18.36  -0.981 0.3950E-01
Quadratic | 17.7  -1.19  0.038 0.3224E-01
Cubic 186  -1.50  0.062  0.0002 0.3434E-01
Quartic | 182  -1.35 0.094 -0.0046  0.00007 0.3309E-01
Linear 19.1  -1.00 3.83 | 0.3120E-01
Quadratic | 185  -1.28  0.039 4.67 | 0.2910E-01
Cubic 171 -1.15  0.073 -0.0033 1.49 | 0.3050E-01
m TABLE 3. Estimated values of the parameters (a;, i degree of the polynomial term, and stochastic parameter

772 ©) for the deterministic and stochastic parameterizations with ¢ = 0 in the imperfect-model experiment.
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