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ABSTRACT

A simple technique to infer the missing momentum forcing in a general circulation model is developed and

evaluated. The response of the large-scale dynamic equations to an external momentum forcing presents

a nonlocal response in the zonal and meridional wind. On the other hand, the response to the external mo-

mentum forcing in the potential vorticity (PV) is a local growing geostrophic mode, so that there is a direct

relationship between the external momentum forcing and the response in PV. In this work, this fact is exploited

to diagnose the missing momentum forcing in the extratropics using a general circulation model. The capa-

bility of the simple technique to estimate a concentrated gravity wave forcing is evaluated. A dynamicalmodel

is evolved with prescribed sources and sinks of PV and then the technique is used to estimate these known

momentum sources and sinks. PV is found to give a much better diagnostic of gravity wave drag compared to

themore traditional zonal wind differences. The technique is also used in a realistic environment, in which the

sources and sinks of PV inMetOffice analyses are determined. The estimation of this missing forcing with this

simple technique is compared with the estimation given by a more complex data assimilation technique

developed by Pulido and Thuburn and, in general, a good agreement is found. The simple gravity wave drag

estimation technique can be used in an online data assimilation cycle, using the increments of the analysis, and

also offline, using a general circulation model and observations.

1. Introduction

The knowledge of the forcing that gravity waves

produce on the general circulation of the atmosphere is

currently to a large extent unknown—only a few global

observational constraints have been derived using bud-

get studies (Murgatroyd and Singleton 1961; Shine 1989;

Alexander and Rosenlof 1996, 2003) and data assimi-

lation (Pulido and Thuburn 2006, 2008). The forcing

of gravity waves that reach the stratopause and aloft is

assumed to be large scale, so that there is a global re-

sponse of the mean (or background) flow to that forcing,

which includes the well-known Murgatroyd circulation

(e.g., Holton 1982). This meridional circulation heats

the winter mesosphere and cools the summer mesosphere,

inverting the expected temperature gradient from ra-

diative grounds.

General circulation models cannot resolve the entire

gravity wave spectrum. Part of the spectrum at the limit

of the model resolution is misrepresented and part of

the spectrum, the smaller-scale waves, is not represented

at all in the general circulation models. The small-scale

waves transport upward a significant part of the total

wave momentum flux (Alexander et al. 2010) so that the

Murgatroyd circulation is not well represented in the

models. To alleviate this systematic model error, general

circulation models represent the effects of the subgrid

physical processes in the resolved circulation using pa-

rameterizations. Simple physical principles are used in

the parameterizations to give an estimation of the ef-

fects of the unresolved processes. Gravity wave drag

parameterizations (Hines 1997; Scinocca 2003) launch

a spectrum of waves at tropospheric heights and propa-

gate them vertically until a saturation criterion is satis-

fied. At the saturation height, a nonreversiblemomentum

flux divergence is produced by the waves so that the

model dynamics is forced. In theory, the parameteriza-

tions should reproduce as closely as possible the missing

drag due to these unresolved gravity waves. However,
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the actual gravity wave drag due to small-scale waves

needed to constrain the parameterizations is largely

unknown from observations (Alexander et al. 2010).

The missing gravity wave drag field in a general cir-

culation model is not unique—an increase in the hori-

zontal resolution changes the resolved spectrum of waves

and, therefore, the missing gravity wave drag is that

produced by a narrower spectrum of waves. This im-

plies that the parameters of a gravity wave parameteri-

zation should be changed when the resolution of a model

is changed. Furthermore, if the physics or the numerics of

the model are changed, the small-scale waves may change

their representation so that the missing gravity wave drag

is expected to change. In this context, the development of

techniques that estimate objectively the physical param-

eters of gravity wave drag schemes is highly desirable for

the calibration of general circulation models.

The detection of systematic errors and attribution to

a particular physical process and geographic location

in a climate model is entirely nontrivial. Model errors

once they are produced evolve with the dynamics of the

model so that they are flow dependent and interact

nonlinearly with other parts of the dynamical system.

One approach that has been followed to attack this

problem is the use of general circulation models cou-

pled in a data assimilation system (e.g., Phillips et al.

2004; Martin et al. 2010), so that model forecasts may

be compared with observations if the model is started

from initial conditions that are observationally con-

strained, at least from a large-scale perspective. Sys-

tematic model errors are more easily identified from

short-range forecasts since errors are localized around

their sources. Taking this statement to the extreme limit,

Klinker and Sardeshmukh (1992) examined the initial

tendency errors. In this limit (toward the initial condi-

tions), the model errors are local and are decoupled be-

tween them. Using this diagnosis to identify errors in the

momentum balance, they detected that vertical diffu-

sion and orographic gravity wave drag from the pa-

rameterization were too strong in the European Centre

for Medium-RangeWeather Forecasts (ECMWF) model.

Rodwell and Palmer (2007) further developed the ini-

tial tendency approach and applied it to a particular

region in which they noticed that some a priori rea-

sonable values of the entrainment parameter gave un-

balances in the initial tendency, showing that those

entrainment parameter values were unrealistic.

A sophisticated technique to estimate gravity wave

drag using data assimilation has been developed by

Pulido and Thuburn (2005, 2006). The technique makes

use of the adjoint equations to trace back the effects of

gravity wave drag on the mean flow to the source of

those effects. The effects are the response of the mean

flow to the forcing produced by the gravity wave drag.

The technique is able to identify the time and location

in which gravity wave drag is forcing the mean flow.

However, this variational data assimilation technique

needs the adjointmodel to determine themodel sensitivity

to the forcing. The development of an adjoint model of

a general circulationmodel is a large, time-demanding task

and so most of the models do not have such adjoint

models. Thus, simpler techniques that do not use the

adjoint model are desirable. This is the motivation for

the present work to develop a simple model-independent

technique to estimate missing gravity wave drag that may

be readily applied to any general circulation model.

The time resolution of the observations is an impor-

tant parameter to determine the kind of response to a

given forcing. Because the effects that we want to mea-

sure are global, we assume in this study that global ob-

servations in the middle atmosphere are available every

6–48h. This time scale determines the time at which the

response is examined. In this time scale, the response of

the mean-flow dynamic equations to the forcing pro-

duced by the gravity wave breaking is the classical geo-

strophic adjustment problem (Blumen 1972).

Because of Coriolis effects, the (mean flow) dynamic

equations are coupled between them in the extratropics.

As is shown in this work, the response to a localized point

forcing in the zonal momentum equation is a nonlocal

tripole pattern. On the other hand, the response to a

localized forcing in the potential vorticity equation is

a local feature that grows with time. Furthermore, the

forcing to the mean flow produced by the breaking of

gravity waves has two effects: a gravity wave genera-

tion (known as secondary waves) and a change in the

geostrophic balance. The gravity wave mode is not pro-

jected on the potential vorticity (PV) and only the geo-

strophic forcing mode is projected on PV. Based on these

dynamical features, in this work we propose to deter-

mine the missing gravity wave drag using a potential

vorticity budget.

In summary, the simple technique that we propose

uses two main points to determine the error produced

by the unresolved motions. First, the use of short-range

forecasts started from analyses so that the model errors

are not spread and time superposed between them.

Second, it makes use of knowing the response of the

equations to the momentum errors so that a dynamic

variable, potential vorticity, is used in the technique in

which the response to the momentum errors is local.

The technique works optimally if it is applied in a data

assimilation cycle.

The paper is organized as follows. Section 2 de-

rives one simplified set of equations following the clas-

sical treatment of the geostrophic adjustment problem
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(Blumen 1972) where the effects of the gravity wave

forcing in the mean flow are captured. In this conceptual

framework, the main concepts are explained in ana-

lytical terms. Then, the implementation of the simple

technique for gravity wave drag diagnosis in a general

circulation model is discussed in section 3. The results

of the simple technique are given in section 4. First, we

start with theoretical experiments in which the dynamical

model is forced with a known forcing and evolve the

model with this known forcing, and then the evolution

of this model simulation at different times is taken as

observation. The potential vorticity budget is applied

to these synthetic observations. In these theoretical ex-

periments, the accuracy of the technique is easily evalu-

ated against the known true forcing. In section 4d, a real

case is examined. The missing gravity wave drag esti-

mated with the simple technique is compared with the

results of a data assimilation technique. The conclusions

of the work are drawn in section 5.

2. Conceptual framework

One of the effects of the small-scale motions that are

not resolved by a numerical model is that they produce

sources and sinks of momentum that are not present in

the model. These uncaptured sources and sinks of mo-

mentum, in turn, produce a model error that evolves

following the dynamics of the system. The response of

the large-scale atmospheric circulation to momentum

forcing is governed by the classical geostrophic adjust-

ment problem, which has been examined in several pre-

vious works (e.g., Dickinson 1969; Blumen 1972). In this

section, we examine the equations of the geostrophic

adjustment focused on the estimation of the missing

momentum forcing in a climate model.

To mimic the effects of the unresolved gravity waves

in a general circulation model, the motions are sepa-

rated in two scales. The large-scale motions are those

that are well resolved by the model and therefore have

spatial scales larger than lM, the horizontal model reso-

lution. The model variables are represented by u, y,f,T,

where the overbar means a spatial average over lM. The

under-/unresolved motions are represented by u0, y0, w0,
f0, T 0 and are thought to be dominated by gravity waves.

As is well known (e.g., Andrews et al. 1987), the small-

scale motions affect the large-scale flow through their

momentum flux divergence terms [e.g.,2r21
0 ›z(r0u

0w0),
2r21

0 ›z(r0y
0w0)], which are generically represented as

X, Y—that is, the zonal and meridional gravity wave

momentum flux divergences, respectively. In what fol-

lows, they are called zonal and meridional gravity wave

drag. The large-scale momentum equations are then

written as

›tuT1 uT›xuT1 yT›yuT 2 f yT 1 ›xfT 5X , (1)

›tyT 1 uT›xyT 1 yT›yyT 1 f uT 1 ›yfT 5Y , (2)

where the subscript T is introduced to denote that this is

the nature simulation (the ‘‘true’’ state), which includes

the effects of the small-scale motions (i.e., the gravity

wave momentum flux divergences) so that there is no

model error in (1) and (2). Equations (1) and (2) are

expressed in a simple framework using an f-plane as-

sumption. The mathematical analysis in this section is

done with a simple set of equations to illustrate the main

concepts. The derivation could be generalized to the

more general primitive set of equations in spherical

geometry. Indeed, in the potential vorticity analysis and

in the experiments with the global dynamical model

shown in section 4, a spherical geometry is considered so

that beta effects are included.

The assumption of the two separated scales between

the slowly varying flow and the perturbations is essen-

tial for the treatment, but it is indeed a needed assump-

tion for the development of any model parameterization.

The effects of the unresolved scales are assumed to be

expressed as forcing terms in the model equations. In

between these two separated scales, there is a gray zone

in which the model is not realistically representing the

wave motions. Thus, a good parameterization must rep-

resent the effects of these gray zonemotions in the larger-

scale flow as much as possible even when the theoretical

foundations (e.g., Bretherton and Garrett 1968) of the

wave–mean flow interactions are not valid for these

motions.

By uH , yH ,fH ,TH , let us represent the solution to the

same large-scale equation system, whose momentum

equations are (1) and (2), but without gravity wave drag,

X 5 Y 5 0. The state variables of this system without

forcing are denoted with the H subscript and are called

background state variables. Thus, the momentum equa-

tions are

›tuH 1 uH›xuH 1 yH›yuH 2 f yH 1 ›xfH 5 0, (3)

›tyH 1 uH›xyH 1 yH›yyH 1 f uH 1 ›yfH 5 0. (4)

In principle, (3) and (4) could be the set of equations

that we have discretized to develop our numerical model

in a grid of lM resolution; because of this, the forcing

terms due to the smaller-scale gravity waves in (1) and (2)

cannot be directly determined and are unknown. In

general, a parameterization tries to reproduce the effects

of the unresolved subgrid dynamics on the larger-scale

dynamics. The parameterization is generally represented

by a forcing term, say Fx(uH, yH, . . .), Fy(uH, yH, . . .),
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which should be introduced in the RHS of (3) and (4).

This forcing term tries to mimic the unknown (X, Y)

gravity wave drag.

The error of our model (3) and (4)—the large-scale

equation system without any parameterization—is the

difference between the solution of the true system

(1) and (2), which does reproduce the effects of the

small-scale waves and the state variables of (3) and (4),

uE 5 uT 2 uH , yE 5 yT 2 yH . In reality, the discretiza-

tion, the numerical schemes, etc., also introduce errors.

However, we assume that the missing gravity wave drag

(X, Y) is the dominant source of errors and the other

sources may be considered negligible. The error uE is

considered a small perturbation to the background

field uH . The sum of uH and uE gives the total field uT .

In what follows we omit the overline to represent the

large-scale variables.

The error of our model due to the unresolved waves

is governed by the difference between the two set of

equations: (1) and (2) minus (3) and (4). If we start from

true atmospheric conditions [uH(t0), yH(t0), fH(t0),

TH(t0)] 5 [uT(t0), yT(t0), fT(t0), TT(t0)] then at least

for a short period of time the error is expected to be

small. Therefore, the model error is governed by the

linear equations. In this conceptual picture, the model

error (uE, yE) represents the linear response to the

unknown gravity wave forcing (X, Y ).

Thus, assuming the response of the forcing is linear,

the resulting equations from (1) and (2) minus (3) and

(4) are

›tuE1 uH›xuE1 yH›yuE 2 f yE 1 ›xfE5X , (5)

›tyE 1 uH›xyE1 yH›yyE1 fuE 1 ›yfE 5Y . (6)

The resulting equation system (5) and (6) is the classical

geostrophic adjustment problem; however, note that in

the initial conditions of the forced variables, the error

of the model at the initial time uE(t0) 5 uT(t0) 2 uH(t0),

yE(t0) 5 yT(t0) 2 yH(t0) is assumed to be zero, so that

instead of being the geostrophic adjustment to an ini-

tial unbalance, it is the geostrophic response to a given

forcing. The changes in the error field are considered of

smaller scale than the background field uH, yH so that

terms involving the horizontal derivatives of uH, yH,

such as uE›xuH, are neglected.

To avoid the advection terms, a Galilean transfor-

mation to a system moving with uH, yH could be con-

ducted as in Zhu and Holton (1987), such as ~x5 x2 uHt,
~y5 x2 yHt. However, for now we consider negligible

the advection effects on the response and then we

discuss the effects of this assumption in sections 4c

and 4d.

The resulting system of equations for the model er-

ror is

›tuE 2 f yE52›xfE 1X , (7)

›tyE 1 fuE 52›yfE 1Y , (8)

›tzfE1N2wE 5 0, (9)

›xuE 1 ›yyE 1 (›z2H21)wE5 0, (10)

where wE is the vertical velocity perturbation induced

by the forcing (X, Y), N is the buoyancy frequency, and

H is the height scale.

The system (7)–(10) is a geostrophic adjustment

problem in which the variables uE, yE,wE,fE respond to

the forcing (X,Y). As long as the evolution of uE, yE,wE,

fE is linear, the general solution could be expressed with

the Green function formulation (e.g., Zhu and Holton

1987). In the context of the estimation of systematic

model error, which is the aim of this work, the absence

of X and Y terms are the source of errors in the model

(i.e., a momentum deficit at some location and time) and

uE, yE, wE, fE is the evolution of the model error. A per-

fect technique to estimate the error source is an inverse

technique that, given the evolution of the state vari-

ables uE, yE,wE,fE, should be able to estimate theX,Y

terms that reproduce the given evolution in the state

variables.

Eliminating variables in (7)–(10), the resulting equa-

tions for uE, yE are

(›ttH1 f 2H1=2)›tuE 5 ›yyX2›xyY1›ttHX1 f›tHY ,

(11)

(›ttH1 f 2H1=2)›tyE 5 ›yxX2›xxY1›ttHY2 f›tHX ,

(12)

where the height operator is H 5 (›z 2 H21)N22›z and

=2 5 ›2xx 1 ›2yy.

The formal solution to the forced system for (11) and

(12) has been shown in Pulido and Thuburn (2005) and

will be not repeated here. The solution is formed by

three modes; two are inertio-gravity waves governed by

the wave operator in (11). These are secondary waves

and have been found in observations (Scavuzzo et al.

1998; Woods and Smith 2010). There is a third mode

that is a steady geostrophic growing mode (e.g., Pulido

and Thuburn 2005).

The response in uE and yE to a meridional and zonal

forcing is related to the second derivatives of the forcing

in (11) and (12) so that a monopolar forcing center pro-

duces a nonlocal response in the geostropic mode.
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Although we have found the equations using u, y to

show the response in these variables, it is convenient

and more illuminating to use as variables absolute vor-

ticity z5 ›xy2 ›yu and divergence d5 ›xu1 ›yy instead

of u, y (e.g., Blumen 1972; Zhu and Holton 1987). We

use as vertical coordinate the potential temperature u.

The resulting equations of the true state for pseudo-

density, s 5 r›z/›u, and vorticity are

›tsT 1$ � (sTuT)5 0, (13)

›tzT 1$ � (zTuT)5Xz , (14)

where uT 5 (uT, yT) and Xz 5 ›xY 2 ›yX. A similar

equation system but without forcing holds for sH and zH.

The hydrostatic system (13) and (14) is closed with the

equations for vertical velocity across isentropes _u and

divergence evolution (e.g., Pulido and Thuburn 2005).

We assume that radiative forcing is known so that no

error is introduced in the vertical velocity equation. In

the divergence equation, a nonrotational forcing Xd 5
›xX 1 ›yY may introduce errors, but this nonrotational

forcing only projects on the two inertio-gravity wave

modes—say, secondary waves—so that it is not able to

change the mean state. This point is discussed in more

detail in Pulido and Thuburn (2005).

The model error sE 5 sT 2 sH and zE 5 zT 2 zH is

governed by the linear equations; from (13) and (14),

we deduce

›tsE1$ � (sEuH 1sHuE)5 0, (15)

›tzE1$ � (zEuH 1 zHuE)5Xz . (16)

The interaction terms (uE � =)sH and (uE � =)zH are

assumed to be negligible since the large-scale variables

are assumed to change slowly compared to model error

variables.

From the homogeneous system equations, which

represent the model, we have

dH 52s21
H DH

t sH 52z21
H DH

t zH , (17)

where DH
t 5 ›t 1 uH � $.

Using (15) and (17) in (16) leads to

DH
t zE2

zE
sH

DH
t sH 2

zH
sH

DH
t sE 1

zHsE

s2
H

DH
t sH 5Xz .

(18)

Regrouping terms in (18) yields

sHD
H
t QE5Xz , (19)

where QE 5 zE/sH 2 zHsE/s
2
H is the perturbation of

potential vorticity (produced by Xz).

The sources of error in potential vorticity (i.e., dif-

ferences in potential vorticity between the nature state

and the background state) are associated in (19) to the

curl of the forcing for adiabatic motions. Nicely, the

potential vorticity in (19) is not governed by the wave

operator; only the steady-growing mode remains for

this variable. The potential vorticity is also transparent

to the divergence of the forcing Xd 5 ›xX1 ›yY. Given

a known forcing Xz, the evolution of QE is readily de-

termined from (19). Note that sH and uH are assumed to

be the ‘‘background fields’’ so that they are known (in

practice, they are given by the evolution of the model).

The response ofQE to aXz forcing is entirely trivial and

easily invertible since it is local. These properties make

the potential vorticity the ideal quantity from which to

retrieve the forcing.

3. Implementation

a. Technique details

The implementation of the method to estimate the

forcing follows closely a data assimilation cycle (e.g.,

Pulido and Thuburn 2005). The cycle is illustrated in

the diagram shown in Fig. 1. A brief introduction of

the proposed technique is given here. Let suppose that

we take a period of the cycle ofDt. In the first cycle—say,

at time t0—the initial conditions are taken from re-

analysis (or analysis) data. The reanalysis variables are

transformed to the model grid. The forecast model

without forcing is evolved from t0 to t01Dt [the resulting
unforced model state is denoted by QH(t1) in Fig. 1].

Then, the missing forcing is calculated using PV differ-

ences between the model forecast and the reanalysis

at t0 1 Dt. The model is evolved again from t0 to t0 1 Dt,
but now forcing the model with the calculated missing

forcing [the resulting forced model state is denoted by

FIG. 1. Estimation cycle. The observations are represented by

Qobs(ti); QH(ti) represents the evolution of the model without

forcing andQF(ti) is the evolution of the model with the estimated

forcing.
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QF(t1) in Fig. 1]. For the second cycle, the model is

started from this last forced forecast at t1 5 t0 1 Dt,
QF(t1) and evolved to time t1 1 Dt without the forcing

term. At t1 1 Dt, the PV difference between the model

forecast and the reanalysis are used to estimate the

missing forcing and so on. A more detailed description

of the technique is given in what follows of this section.

The numerical model employed in this study is the

middle-atmosphere dynamical model of the University

of Reading. It represents the full hydrostatic primitive

equations in a hexagonal–icosahedral spherical grid

(Thuburn 1997). The model covers the middle atmo-

sphere with 16 vertical levels from 100 to 0.1 hPa and

the vertical coordinate is potential temperature. A re-

alistic radiative transfer scheme developed by Shine

(1987) is used that includes the radiative effects of CO2,

O3, and H2O. A gravity wave drag parameterization

(Scinocca 2003) is implemented in the model.

The numerical model is started at t0 taking initial

conditions from reanalysis data. Then, the model is

evolved from t0 to t15 t01Dt without gravity wave drag
parameterization. The background state at t1, sH(t1),

uH(t1), yH(t1), QH(t1) is determined in this way. The

time-scale Dt in which we evolve the model and de-

termine the forcing using the model and the observa-

tions is defined by the available observations that we

have to constrain the global-scale problem. These ob-

servations are the ones used in global-scale data assim-

ilation systems. A representative time scale for Dt is
about 24 h.

The forcing is assumed to be constant in time inside

the estimation window Dt considering a time scale of

Dt ’ 24 h. Using (19) and assuming also a constant-in-

time s field,1 the missing forcing is obtained with

Xz 5sobs(t0)[Qobs(t01Dt)2QH(t01Dt)]/Dt , (20)

where Qobs(t0 1 Dt) is the observed PV at t0 1 Dt taken
from reanalysis data, andQH(t01Dt) is the PV at t01Dt
evolved with the numerical model, with the gravity wave

drag parameterization switched off, from t0 to t0 1 Dt
using as initial conditions the observed state at t0 (i.e.,

reanalysis data at t0). Note that the difference between

Qobs(t0 1 Dt) and QH(t0 1 Dt) in (20) includes not only

a contribution from the differences between the observed

and the background vorticity but also a contribution from

the differences between the observed and the back-

ground pseudodensity.

Once the forcing term for the period from t0 to t0 1Dt
is determined with (20), we have two choices to use as

initial condition of the model for the next time window

t0 1 Dt, t0 1 2Dt: to use the reanalysis data at t0 1 Dt or
to evolve again the forecast model from t0 to t0 1 Dt but
using the determined forcing term, (20), in the model

momentum equations. Then, the forced model state at

t0 1 Dt can be used as initial condition for the next time

window. If we use reanalysis data at t0 1 Dt as initial

condition, then we will be restarting the model with

a different state so that the model evolution trajectory

will contain jumps at the times t0 1 nDt; each of these

jumps in the model state is expected to produce some

spinup processes. On the other hand, taking the forced

model state at t0 1 nDt as initial condition produces

a smooth model trajectory as shown in Fig. 1. The evo-

lution of the forecast model with this forcing term,

(20), is expected to be close to the observation trajec-

tory, since the forcing is the difference between the

observations and the model forecast so that the model

momentum equations are nudged to the observed state.

A small model drift is expected because the model

thermodynamic equation is not nudged to observations.

b. Experimental design

Two sets of experiments were performed. The first

set of experiments (cases 1–3) comprises the so-called

twin experiments. The second set of experiments is a

realistic case in which we use as observations Met Office

analyses (case 4). The twin experiments (cases 1–3) are

used to evaluate the performance of the technique. In

these twin experiments, the model is evolved from a

given initial condition Qobs(t0) with a known forcing

XT, YT to generate a set of ‘‘synthetic observations,’’

Qobs(ti) (the forced model state at different times). In

the illustration in Fig. 1, the twin experiments have

Qobs(ti) 5 QF(ti), where QF(ti) is the evolution of the

model with the known forcingXT,YT so that there is no

model drift in the twin experiments. Using these ide-

alized experiments, we can evaluate the performance

of the proposed technique since we know the forcing of

the ‘‘observed’’ model state (i.e., XT, YT), which is not

known in a real experiment.

For the generation of the synthetic observations with

the model, we have to give the initial conditions and

the forcing XT, YT. The first experiment, case 1, uses

rest-state conditions as initial condition and a zonally

symmetric forcing. Case 2 also uses rest-state conditions,

but a zonally localized zonal forcing is imposed to the

model. The last twin experiment, case 3, uses initial

conditions on 1 May 2002 taken from Met Office

1Equation (19) does support time variations in sH . During the

course of this study, the assumption of a steady s field taken in

(20) was relaxed using higher-order approximations. However, the

evaluation of this higher-order approximation did not lead to any

significant improvement in the estimation (not shown).
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analysis. Then the model is evolved, for case 3, with a

prescribed localized forcing to generate the synthetic

observations in this case.

The application of the forcing estimation technique

to the twin experiment cases is exactly the same as the

application to a realistic case as explained in section 3a

and shown in Fig. 1, except that instead of using re-

analysis as observations, we use the synthetic observations.

For an easier interpretation of the results, the esti-

mated Xz, from (20), is transformed to obtain the zonal

and meridional gravity wave drag components (X, Y)

Furthermore, a standard way to evaluate the zonal wind

forcing term might be written as

X5 [uobs(t01Dt)2uH(t01Dt)]/Dt . (21)

We refer to this as U estimation and use it as a compar-

ison to the PV estimation of the missing forcing.

Finally, a real case, case 4, is examined in section 4d, in

which Met Office analyses are used as observations and

we estimate the missing gravity wave drag of the model.

In this real case, the true missing forcing XT, YT is not

known, so we apply the Pulido and Thuburn (2005) data

assimilation technique to estimate the forcing and com-

pare with the estimation results given by the technique

introduced in this work. The data assimilation approach

uses a four-dimensional variational data assimilation

technique that has been developed for the same Uni-

versity of Reading model used in this work. The as-

similation technique includes the adjoint model and a

conjugate gradient minimization module [see Pulido

and Thuburn (2005) for further details]. The estimation

of gravity wave drag with the data assimilation tech-

nique is referred to as DA estimation.

If the gravity wave drag estimation is performed in

an operational data assimilation cycle, then the incre-

ments contain the information about the difference be-

tween observations and the model forecasts. Therefore,

the increments can be used to estimate the missing gravity

wave drag. Since the models in the data assimilation

systems have implemented a gravity wave parameter-

ization in general, a linear response has to be assumed

such that the total missing drag is the sum of the estimated

gravity wave drag and the one given by the parameteri-

zation. This assumption is evaluated in section 4d.

4. Results

a. Case 1: Estimation of a zonally symmetric forcing:
Rest atmosphere

In the case 1 experiment, a zonally symmetricGaussian

forcing located at 1 hPa and at midlatitudes (Fig. 2a) is

imposed in the momentum equations of the model.

The model is started from rest conditions and from an

isothermal atmosphere. The model is evolved adiabati-

cally in this idealized simulation. Therefore, the rest

conditions are a solution so that the total field is only

the response to the forcing. The simulation is con-

ducted for 24 h. At 24 h, the fields, zonal wind, and PV

are taken to perform the diagnosis. Figure 2b shows

zonal forcing from U estimation and Fig. 2c shows zonal

forcing from PV estimation. A much closer agreement

to the true forcing is obtained with the PV estimation.

The root-mean-square error (RMSE) of the gravity wave

drag using PV estimation is 0.39m s21 day21 while the

RMSE using U estimation is 0.82m s21 day21 so that the

error in the PV estimation is about half the U estima-

tion. This shows that PV field, on which the PV esti-

mation is based, has more dynamical information on

the adjustment process than the U field.

The response in the zonal wind at 24 h is shown in

Fig. 3a. Three jets are found in the response. Thus, a

monopolar zonal forcing has a response in the zonal

wind that is a tripolar pattern. This nonlocal behavior is

related to (11) in which we found that the u response is

FIG. 2. Experiment with a zonally symmetric forcing in the zonal momentum equation. (a) Prescribed zonal forcing. (b) Zonal forcing

estimated using the U estimation. (c) Zonal forcing estimated using the PV estimation. Contour interval is 1m s21 day21.
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related to the second meridional derivative of the zonal

forcing. The response to the forcing estimated with

PV estimation (Fig. 3c) gives a closer agreement with

the true response than the forcing from U estimation

(Fig. 3b) except close to the equator where geostrophic

balance does not hold. In the tropics, the response to

a given localized forcing is not governed by geostrophic

adjustment so that potential vorticity may not be a good

diagnostic variable; indeed, the dynamical equations are

decoupled close to the equator.

This experiment shows that the intuitive first-order

evaluation of gravity wave drag using zonal wind dif-

ferences may be imprecise. The response to a localized

forcing is governed by an elliptical equation in the zonal

flow so that the response is nonlocal in time scales of

a few hours. Only for a period of less than 1 h can the

response in the zonal flow to the zonal forcing be con-

sidered local.

A qualitatively similar tripolar pattern to Fig. 3a in the

zonal wind difference was found by McLandress et al.

(2012) in the Southern Hemisphere using the analysis

increments in the Canadian Middle Atmosphere Model

(CMAM). Thus, the missing forcing in the Southern

Hemisphere of CMAMmay be linked to a concentrated

deceleration center. The amplitude of the missing forc-

ing is expected to be stronger than the estimation of

the forcing given by U estimation from (21) used by

McLandress et al. (2012).

b. Case 2: Estimation of a localized zonal forcing:
Rest atmosphere

The second experiment evaluates the evolution of

the model forced by a zonally as well as meridionally

and vertically localized zonal forcing. This forcing can

be divided in two parts: the nonrotational part and the

nondivergent part. In what follows, we use a more direct

terminology (although less precise), calling the non-

divergent part of the forcing ‘‘rotational’’ and the non-

rotational part ‘‘divergent.’’ Figure 4a shows the localized

zonal forcing. Figures 4b and 4c, which show the zonal

forcing contributed from the rotational and the di-

vergent part of forcing, are obtained by transforming

the zonal prescribed forcing to the rotational and di-

vergence parts of the forcing. Then, the rotational part

FIG. 3. (a) Response of the zonal flow to the prescribed zonal forcing. (b) Response to the zonal forcing estimated using theU estimation.

(c) Response to the zonal forcing estimated using the PV estimation. Contour interval is 0.5m s21 day21.

FIG. 4. (a) The horizontally localized prescribed zonal forcing. (b) The zonal forcing contributed from the rotational part of the forcing.

(c) The zonal forcing contributed from the divergent part of forcing. Contour interval is 1m s21 day21.
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is transformed back to the zonal (and meridional) com-

ponent of the forcing (Fig. 4b shows the zonal forcing

component), and the divergent part is separately trans-

formed back to the zonal (and meridional) component

of the forcing (Fig. 4c). Note that the sum of the field in

Fig. 4b and the field in Fig. 4c gives the zonal forcing

shown in Fig. 4a.

To evaluate the response to the divergent and rota-

tional parts of the forcing, two simulations were con-

ducted: one in which the model is forced by the rotational

part of the drag and the other one forced by the di-

vergent part. Figure 5 shows the zonal wind response

in the two simulations at t 5 1 and t 5 5 days. As seen

in section 2, the response to the divergent part of the

forcing shown in Figs. 5b and 5d is expected to generate

gravity waves and a steady-state nongrowing anomaly

(Pulido and Thuburn 2005). On the other hand, the

response to the rotational part of the forcing is a growing

anomaly (Figs. 5a and 5c), as found in (19). The total

response is clearly dominated by the response to the ro-

tational part of the forcing (note that contours intervals

are 1 and 0.02ms21 for the rotational and the divergent

parts, respectively).

The zonal forcing from the curl of the gravity wave

drag estimated using PV estimation is shown in Fig. 6a

and usingU estimation in Fig. 6b. The estimated gravity

wave drag shown in Fig. 6 should be compared to the

zonal forcing of the true curl of the gravity wave drag

shown in Fig. 4b. The maximum error in the estimation

of the rotational part of the drag using PV (U) esti-

mation is lower than 0.7 (3) m s21 day21. The RMSE in

the gravity wave drag estimation is 0.11m s21 day21

for the PV estimation and 0.18m s21 day21 for the U

estimation.

The response to the divergent part of the forcing is

very small and nonlocal so that it is not possible to be

estimated precisely using a budget technique. On the

other hand, a data assimilation technique is able to es-

timate the divergent part of the drag in twin experiments

(Pulido and Thuburn 2005). Since the divergent part of

the forcing cannot change the geostrophic balance and,

therefore, it does not affect the general circulation, its

estimation does not appear to be as important as the

rotational part. Furthermore, the divergent part of the

flow is poorly constrained from observations, as is ar-

gued in Pulido and Thuburn (2006).

FIG. 5. (a) The zonal wind response at t 5 1 day to the rotational part of the horizontally

localized prescribed zonal forcing (contour interval 1m s21). (b) The response at t 5 1 day to

the divergent part of the forcing (contour interval 0.02m s21). (c) The response at t5 5 days to

the rotational part of the forcing [contour interval as in (a)]. (d) The response at t 5 5 days

to the divergent part of the forcing [contour interval as in (b)].

FEBRUARY 2014 PUL IDO 691



c. Case 3: Estimation of a localized nondivergent
forcing: Realistic-state atmosphere

The estimation of a localized nondivergent forcing

is examined. The response to this prescribed localized

forcing is expected from (19) to be local so that it is

particularly suitable for evaluation purposes. To evaluate

the technique in a more realistic environment than the

two previous experiments in which the initial conditions

were a rest state, the model is started with initial con-

ditions taken from Met Office analysis for the day of

1 May 2002. The model is then evolved from those

initial conditions and with the prescribed localized forc-

ing to obtain the synthetic observed state on 2 May 2002.

Figures 7a and 7d show the zonal wind at 1 hPa and at

908 longitude on 2 May 2002, which was evolved from

Met Office analysis on 1 May 2002. The curl of gravity

wave drag estimated with the PV estimation is shown in

FIG. 6. (a) The estimated zonal forcing contributed from the rotational part of the forcing

using PV estimation for the horizontally localized forcing case. (b) The estimated forcing using

U estimation. Contour interval is 1m s21 day21.

FIG. 7. (a) Cross section at 1 hPa of the zonal wind (m s21) on 2 May 2002 (contour interval 10m s21). Prescribed curl of the drag

(shading interval 106 s21) and estimated curl of the drag (contours) using (b) PV estimation and (c) DA estimation. (d)–(f) As in (a)–(c),

but a y–z cross section at 908E.
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Figs. 7b and 7e (contours), and the true curl of the

gravity wave drag is also shown in the figures (shading).

The estimated curl of gravity wave drag is horizontally

spread over a slightly larger region than the true curl of

gravity wave drag particularly toward the equator and to

the east. The estimated values peak at 4.63 106 s21, while

the true peak is 6.03 106 s21. A closer agreement is seen

in Figs. 7c and 7f between the true curl of gravity wave

drag and the one from the DA estimation. The estimated

peak in that case is 5.5 3 106 s21. The contours in the

horizontal pattern follow closely to the true gravity wave

drag. This experiment shows that the DA estimation is

able to trace back the location of the momentum

sources even in the presence of strong zonal winds. On

the other hand, the PV estimation is affected by ad-

vection, but the effect of advection in these strong

winds does not appear to be so large for 24-h time

windows.

Note that under the approximation used to estimate

the rotational part of the forcing, (20), we neglect the

linearized advection of forced PV. This is a strong ar-

gument to use short time windows. The window we use

is 24 h; if shorter window forecasts—say, 6 h—are used,

then the drag estimation could improve since the effects

aremore local. For shorter-range forecasts, the interactions

between the mean flow and the response to the forcing

and the advection by the mean flow are smaller.

d. Case 4: Estimation in a real case

In this section, we focus on a real estimation case in

the week from 1 to 7 May 2002. Met Office analyses are

used as observations. The model is started with initial

conditions from the Met Office analysis at 1200 UTC

1May 2002. The model simulation after 24h is compared

with the Met Office analysis at 1200 UTC 2 May 2002;

the curl of the drag during this 24-h time window is es-

timated from the PV estimation (20). For the second

day, the model is started from the previous model sim-

ulation, which has been forced by the estimated gravity

wave drag. The second gravity wave drag is estimated as

the difference between this forecast and Met Office

analysis at 1200 UTC 3 May 2002, and so on. This esti-

mation cycle is further discussed in section 3 (see Fig. 1).

The estimated weekly averaged zonal gravity wave drag

is shown in Figs. 8a and 8d. To evaluate the validity of

the PV estimation technique, theU estimation is shown

in Figs. 8b and 8e and an estimation of the gravity wave

drag using the data assimilation technique as in Pulido

and Thuburn (2008) was also conducted during the

same week from 1 to 7 May 2002. Figures 8c and 8f

FIG. 8. Weekly mean gravity wave drag estimated (a),(d) using PV estimation, (b),(e) using U estimation, and (c),(f)

using data assimilation. (top) Zonally averaged gravity wave drag and (bottom) gravity wave drag at 0.24 hPa. Contour interval is

5 m s21 day21.
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show the weekly averaged zonal gravity wave drag

from the data assimilation technique.

We note that we found a better agreement between

the gravity wave drag from PV estimation with the

gravity wave drag fromDA estimation when the forced

(nudged) forecasts were used in subsequent windows.

If Met Office analyses are used in the subsequent win-

dows as initial conditions, the PV estimation has larger

differences compared to the DA estimation, particularly

around the equator (not shown). One possible explana-

tion for this is that differences that are not completely

corrected in one time window in a smooth model evolu-

tion may be corrected in subsequent windows. On the

other hand, when the model is restarted every time, the

estimation does not have memory from previous esti-

mations and also spinup processes are generated.

The agreement between the PV estimation (Fig. 8,

left) and the gravity wave drag from the data assimila-

tion technique (Fig. 8, right) is very good; the location

and width of the deceleration center are well detected.

The peak magnitude at the center is a little weaker: 30

versus 32m s21 day21. The acceleration center below

the deceleration center—a behavior that is expected

from a Lindzen’s (1981) type of analysis—is very well

captured both in magnitude and shape. In the Northern

Hemisphere, the positive deceleration center, centered

at 308N and 0.4 hPa, is also rather well estimated but it

is also weaker compared to the data assimilation tech-

nique. The peak is 14 versus 18m s21 day21. This is in

agreement with the slight errors in the gravity wave drag

estimation that we found in the twin experiment shown

in section 4c. The gravity wave drag horizontal patterns

shown in Fig. 8d have the maximum deceleration fea-

ture, at 608S, 1108E, located to the west of the maximum

feature found in the DA estimation (at 658S, 408E; see
Fig. 8f). This difference is expected because of advec-

tion of the errors by the winter jet (Figs. 7a and 7d) so

that the error sources are expected to be to the east and

then the errors are transported by the winter jet (an

effect that is not captured by the PV estimation). The

PV estimation technique neglects the linear advection

(by the winter jet) of forced PV; on the other hand, the

four-dimensional data assimilation technique does ac-

count for linear advection of forced PV through the

adjoint model.

We also conducted an experiment in which the fore-

casts are produced with the gravity wave drag param-

eterization (Scinocca 2003) switched on, and the PV

estimation is conducted over those forecasts. In this

case, the estimated missing gravity wave drag is the one

that is not captured by the parameterization (Fig. 9a).

The gravity wave drag given by the parameterization

is shown in Fig. 9b. The estimated missing gravity wave

drag plus the parameterized gravity wave drag gives

a similar pattern as in Fig. 8a and d so that the linear

superposition assumption is valid in this context. Fig-

ure 9c shows the difference between themissing gravity

wave drag from Fig. 8a and the sum of estimated missing

gravity wave drag and the parameterized gravity wave

drag. This experiment shows that standard short-range

forecasts that are performed for model evaluation are

useful to determine the gravity wave drag that is miss-

ing in the parameterization (i.e., to measure the mis-

representation of the gravity wave drag).

5. Conclusions

The use of short-range forecasts that are initially

started from analyses constrained by observations, for

time lengths from about 6 to 24 h, may be used in the

middle atmosphere to determine the momentum sour-

ces and sinks of a general circulation model. The effects

of these momentum sources are linear and relatively

local on these time scales. The momentum sources can

FIG. 9. (a) Weekly mean missing gravity wave drag estimated using PV estimation in an experiment in which the gravity wave drag

parameterization is switched on. (b) Weekly gravity wave drag given by the parameterization. (c) Difference in total gravity wave drag

between the estimation experiments with and without gravity wave drag parameterization. Contour interval is 5m s21 day21.
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be estimated very precisely using a PVestimationmethod

in the extratropics. It permits us to estimate the non-

divergent component of the forcing, which is the com-

ponent that drives the mean flow. This nondivergent

component of the forcing is the only component that is

projected on the geostrophic mode. On the other hand,

the nonrotational component of the forcing is projected

on the inertio-gravity wavemodes and is not able to drive

the mean flow (e.g., Pulido and Thuburn 2005).

The technique has been extensively examined using

twin experiments and has also been applied in a re-

alistic environment initialized with analysis data. In both

cases, the estimation of the nondivergent component of

the gravity wave drag is excellent compared to the

known forcing. In an estimation that uses analysis data

as observations, the simple technique has been com-

pared with the gravity wave drag estimation using a

data assimilation technique (Pulido and Thuburn 2005),

which gives very similar results to the data assimilation

estimation, except for the horizontal location of the

forcing, which is affected by advection of the response

to the forcing.

The evaluation of the gravity wave drag parameteri-

zation in the middle atmosphere appears to be easier

than similar evaluations in the troposphere where the

effects of the parameterizations are coupled. For in-

stance, a precipitation error may be traced back to an

error of the convection scheme, the planetary boundary

layer parameterization, or the land surface model. On

the other hand, in the middle atmosphere the parame-

ters of the radiative scheme are well known so that the

main source of model error is due to small-scale motions

that cannot be fully captured by the model resolution.

These effects of small-scale motions are represented

by the nonorographic and orographic gravity wave drag

parameterizations. To distinguish between orographic

and nonorographic contributions to the estimated miss-

ing gravity wave drag does not appear to be trivial apart

from the geographical location where themissing gravity

wave drag is found, which could be associated with

mountains. The other aspect that might contaminate

the gravity wave drag estimation is if analyses are not

well constrained by observations; in this case, the esti-

mation technique will infer the gravity wave drag given

by the parameterization in the data assimilation model.

The fact that data assimilation systems [e.g., CMAM

(McLandress et al. 2012) and ECMWF (N. Zagar 2013,

personal communication)] give important analysis in-

crements (i.e., differences between analysis and model

forecasts) where gravity wave drag is expected and esti-

mated by the technique shows that the fields are well

constrained by observations there. Using the observed

large-scale PV field to determine the forcing requires

both the large-scale wind field (to determine vorticity

perturbations induced by the forcing) and temperature

field (to determine pseudodensity perturbations in-

duced by the forcing). On the other hand, the U esti-

mation uses only the large-scale observed wind field.

Although the PV estimation requires more observa-

tional information, the fact that it uses the temperature

field to determine the forcing is a positive aspect of the

technique since this is the field best constrained by

observations.

The technique was also evaluated for the complete

month of June 2002 with a time window of 24 h, in which

the differences between the nudged forecasts (which

are forced by the estimated gravity wave drag) and the

observations remain relatively small. For an estimation

longer than 1 month, it may be convenient to restart the

model from the observations (analysis or reanalysis)

every 30 days so that any small drift that is produced

after 30 days of estimations and is not well captured by

the momentum corrections is eliminated. This small drift

between observations Qobs(ti) and the forced model

evolutionQF(ti) is illustrated in Fig. 1. Then, we suggest

for i 5 30 to restart the model again with Qobs(t30) as

the initial condition instead of using QF(t30); in this

way, we eliminate the model drift that is produced in

the previous 30 time windows.

We envision two ways of implementing the missing

drag diagnosis: in an online data assimilation cycle and

in an offline estimation. If the general circulation model

is part of a data assimilation system, the increments

are available during each data assimilation cycle, which

are the differences between the model forecasts (started

from the last analysis) and the available observations.

Using the increments, the missing nondivergent com-

ponent of the gravity wave drag for each cycle can be

estimated from (20). In this work, we have applied an

offline estimation in which the analyses from an ex-

ternal data assimilation system are used as observations;

the model is evolved two times in each time window. The

first time is a free-runmodel evolution [denoted byQH(ti)

in Fig. 1]. The second model forecast is nudged to the

external analysis using the estimations of gravity wave

drag to force the model toward the analysis [denoted by

QF(ti) in Fig. 1].

Because of its simplicity, the technique can be readily

applied to any general circulation model, as opposed

to data assimilation techniques, which may require

the adjoint model of the general circulation model in the

case of a variational data assimilation technique. The

use of ensemble Kalman filter techniques to estimate

model error is also very promising since they are model-

independent techniques (Ruiz et al. 2013). However,

to our knowledge, they have not been evaluated to
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estimate momentum forcing terms. A related problem—

the estimation of the spatial distribution of carbon flux

sources—has been successfully obtained with the en-

semble Kalman filter (Kang et al. 2012).

The simple technique can be easily applied to the

multimodel simulations that are being conducted for

the evaluation of the parameterizations of climate models

in which short-range forecasts from observed initial con-

ditions are produced—for example, Transpose Atmo-

spheric Model Intercomparison Project (Williams et al.

2013). The data requirements for the gravity wave drag

estimation are the short-range forecast state variables

(u, y,T,f) and themomentum forcing terms such as the

gravity wave drag from the orographic and nonoro-

graphic parameterizations (with the frequency of the

estimation periods). In the case that the model has

the parameterizations switched on during the forecasts,

the total missing gravity wave drag is the sum of the pa-

rameterization forcing and the estimated missing forcing.

The averaged estimated forcing in themiddle atmosphere

may be interpreted as a lack of tuning the parameters of

the gravity wave drag parameterization.
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