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Abstract. Air flowing over a forest canopy is examined for instabilities driven by Jeffreys’ drag
mechanism. The calculations indicate that the mechanism is generally effective in strong wind con-
ditions and extremely effective when the boundary layer supports wave trapping. The instability
forces the free wind down amongst the trees, creating episodes of stress in the foliage.
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1. Introduction

Flows may have instabilities that grow by modulating frictional stresses, as Jeffreys
demonstrated for water running down a rough inclined channel (Jeffreys, 1925). A
similar drag mechanism destabilizes the Earth’s surface wind (Chimonas, 1993),
while this paper applies the mechanism to the wind over a forest canopy. In a
forest, a wave forces the free-air stream down into the trees creating a drag, and
this drag feeds back into the wave – the feedback causes the wave to amplify. The
instability becomes more effective as the speed of the free wind increases and most
effective when there is a shallow near-surface wave duct.

This study is intended to demonstrate the new application of Jeffreys’ drag
mechanism and generate interest in it as an integral part of boundary-layer dy-
namics. At this time the only concise formulation of the mechanism involves a
long-wavelength approximation, and our results demonstrate that the canopy-drag
instability is effective in this limit. However, the long-wave formulation predicts
a monotonic increase in growth rate as the wavelength decreases, which is al-
most certainly incorrect; thus the scale at which the instability peaks is currently
unknown, inviting work that treats the smaller scales consistently.

Observations of waves and eddies in a canopy are reviewed by Raupach et
al. (1996). The review is mainly concerned with the small-scale structure, and
Raupach et al. show that this end of the spectrum obeys Kelvin–Helmholtz scaling
laws. Raupach et al. (1996) also identify a long-wavelength component that mod-
ulates the short-wavelength activity, and refer to this long-wavelength component
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Figure 1. The structure of the two-layer model. The flow is ducted between rigid plates at z = ±h.

as ‘inactive turbulence’, which is generally visualized in terms of large vortices.
However, inactive turbulence includes a wave component – Einaudi and Finnigan
(1993) postulate a continuous exchange between waves and turbulence at these
scales – and our study shows that Jeffreys’ mechanism is a very effective source of
long-wavelength boundary-layer waves, and thus a source for the long-wavelength
disturbances in all their forms. We suspect that Jeffreys’ mechanism also enhances
the growth of the smaller-scale Kelvin–Helmholtz disturbances, although confirm-
ation of this (or its rejection) must await a short-wavelength formulation of the
mechanism.

2. A Two-Layer Demonstration

The instability is demonstrated with the simplest model that incorporates Jeffreys’
mechanism into canopy drag. The undisturbed flow, shown in Figure 1, consists of
two homogeneous layers of incompressible fluid each filling half the space between
rigid horizontal plates set 2h apart. The lower layer is at rest and has density ρ1,
while the upper layer has horizontal speed U and density ρ2. The lower half of the
space contains trees that create a drag on any flow within them.
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Coordinates are chosen with x parallel to the mean wind and z in the vertical
direction, while t denotes time. A wave with phase speed c and wavenumber k

propagates along the layers causing a vertical displacement η′ of fluid parcels about
their mean heights

η′(x, t, t) = η(z) exp ik(ct − x). (1)

The displacement brings the air above into contact with the trees, and the friction-
force per unit volume exchanged between wind and foliage is formulated with the
aerodynamic law

F(x, z, t) = −ρ(C/h)V|V|, (2)

where V is the air velocity through the foliage and C/h is an effective volume-drag
coefficient (C is a dimensionless number and h, the canopy depth, is set equal to
the depth of the lower layer). The resistance exerted by a canopy is a function of
many variables, including the aerodynamic drag coefficients of the trunks, branches
and leaves, and the cross sections and volume-densities of these elements (Amiro,
1990). The formulation (2) provides the overall friction so the C used here is a
combination of the factors presented in Amiro (1990).

As shown in Figure 1, a sub-layer of depth η(0) is forced below z = 0 so that
the half-cycles with η′(x, 0, t) < 0 are brought within the trees. Then, to first-order
in the wave amplitude, the total friction force acting on a vertical column of unit
cross-section drawn through the upper fluid is∫
upper−layer fluid

F(x, z, t) dz =
{ −x̂ρ(C/h)U 2|η′(x, 0, t)| for η′(x, 0, t) < 0

0 for η′(x, 0, t) > 0,
(3)

where x̂ is the unit vector in the direction of the mean wind. Since the lower fluid
is at rest there is no first-order drag on it; if the lower fluid contained a mean wind
it would experience a stabilizing first-order drag (Lee, 1997).

Following the spirit of Jeffreys’ (1925) approach two simplifying approxima-
tions are made: the wavelength is taken to be greater than 2πh (so that (kh)2 < 1),
and the force (3) is redistributed uniformly over the upper-layer column (presum-
ably by turbulence). The phase speed c of the wave then obeys the dispersion
relation (see Appendix A)

c2 + (c − U)2 − g
�ρ

ρ
h − i

CU 2

2kh
= 0, (4)

where �ρ = (ρ1 − ρ2) is the density drop between the layers and ρ is the average
density. Only the stable stratification �ρ > 0 is considered.

When the drag is omitted the solutions of (4) reduce to the bounded two-layer,
long-wavelength, Kelvin–Helmholtz result

c = U

2
±
√
hg �ρ

2ρ
− U 2

4
. (5)
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There is no instability (c is real) if the energy tied up in the stable-stratification
gh�ρ exceeds the kinetic energy 1

2ρU
2. But with the drag included (4) always

has an unstable root (imaginary part of c < 0). The limiting condition for Kelvin–
Helmholtz waves, gh�ρ/2ρ − U 2/4 = 0, is particularly easy to examine. The
frictionless solution (5) reduces to a single, non-growing wave propagating at the
mean speed U/2 of the fluid, while with friction there are two solutions of (4), one
that grows in time and one that decays

c = U

2

(
1 ± (1 + i)

√
C

2kh

)
. (6)

The growing mode (the one with the negative imaginary part) travels more slowly
than the mean fluid speed U/2 while the decaying mode is faster. The growing
mode has the following properties:

(a) As its wavelength 2π/k increases the wave becomes more retrograde relative
to the mean flow, eventually moving in the opposite direction to the wind. The
instability then has no critical level. Jeffreys’ water-channel instabilities also
lacked critical levels, and this is a feature that distinguishes drag instabilities
from shear instabilities as the latter always have critical levels.

(b) The wave (1) grows exponentially at the rate −kIm[c], which equals
U/2

√
Ck/2h, so the growth rate is zero for infinite wavelength and increases

continuously towards shorter wavelengths. Since the formulation has used
the long-wavelength approximation (kh)2 < 1 its predictions are already
questionable at (kh)2 = 1 and we do not know where the instability
maximizes.

(c) The growth rate increases with the strength of the free wind U . This is ex-
pected, since the wind is the sole source of energy. But it also suggests
that instability and hence gusting should be more common in strong-wind
conditions.

(d) The growth rate increases with the coefficient C, which emphasizes that fric-
tion is creating the instability. Lee and Barr (1998), observed that wave activity
in a forest does indeed decrease with leaf-fall and its attendant reduction of C.

A numerical example gives a sense of the strength of these instabilities. The time
τ for a wave to grow by one factor of e is 1/(Imaginary part of ck), so from (b)
τ = 2/U

√
2h/Ck. Setting U = 5 m s−1, h = 15 m, C = 1.5 (the large end

of observed values) and a wavelength of 100 m (kh ≈ 1) leads to τ = 7 s. Even
wavelengths of 1 kilometre (kh ≈ 0.1) take only 23 s to exponentiate, and thus have
explosive growth rates. The instability would still be meteorologically significant
if factors not considered here reduced growth by an order of magnitude.
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Figure 2. The structure of the three-layer model.

3. A Model without the Upper Plate

The finite duct of Section 2 is opened to the overlying atmosphere, the rigid plate is
removed and the free atmosphere is continued upward to mimic a deep, neutrally
stratified residual layer, Figure 2. The drag on the atmosphere that results when
the wave forces the free wind down into the trees is redistributed (presumably by
turbulence) over a middle-layer column of thickness l. The dispersion relation for
the wave (1) in this flow is (Appendix A)

c2 + (c − U)2 kh

(1 + kl)
− g

�ρ

ρ
h − i

CU 2

2(1 + kl)
= 0. (7)

The long-wavelength approximation (kh)2 < 1 and the shallow-mixing approxim-
ation (kh)2 < 1 are both imposed. With (kl)2 � 1 the value of l has no significant
influence in (7).
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As in Section 2 the drag instability is evaluated relative to the Kelvin–Helmholtz
instability. When the drag term is discarded (7) provides the Kelvin–Helmholtz
solutions

c = U
kh

1 + k(l + h)

−
√
�ρ

2ρ

gh(1 + kl)

1 + k(l + h)
+
(

khU

1 + k(l + h)

)2

− khU 2

1 + k(1 + h)
.

(8)

Comparing this with (5) shows that removing the upper plate has reduced the im-
portance of the velocity terms in the regime (kh)2 < 1 of the model. According
to (8), even a minimal stable density contrast (�ρ > 0) now makes c real at the
longer wavelengths. However, when drag is retained, the dispersion relation (7)
always has an unstable solution

c = U
kh

1 + k(l + h)

−
√
�ρ

2ρ

gh(1 + kl)

1 + k(l + h)
+
(

khU

1 + k(l + h)

)2

− khU 2

1 + k(l + h)
+ i

CU 2

4(1 + kl)

(9)

(with the square root defined to be in the upper-half plane).
The instability retains the general properties outlined in Section 2: it is retro-

grade with respect to the mean flow and its growth increases with the strength
of the free wind U and the coefficient C. The growth rate −Im(ck) decreases
with large wavelength faster than before, but long wavelengths are unstable where
Kelvin–Helmholtz theory would have no instabilities.

Direct comparison of the friction contributions in (7) and (4) shows that the
upper plate makes the drag instability more effective. This is because removing
the plate adds additional mass to the wave but does not change the net drag force.
Reduced growth is most noticeable at the longest wavelengths, as these reside to a
greater degree (as Ae−kz) in the fluid that is exposed by removing the plate.

4. Numerical Results

The dispersion relations for c are evaluated for characteristic canopy situations.
The coefficient C varies from 0.3 for a typical stand of pines to 1.5 for spruce trees
(Amiro, 1990: note that this reference resolves C into more basic factors).
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Figure 3. Wave phase speeds in the three-layer model with �ρ = 0, U = 5 m s−1 and h = l = 15 m.

4.1. NO UPPER PLATE, NO DENSITY CONTRAST

The governing equation is (9) with �ρ = 0. Numerical results are given for U =
5 m s−1 and h = l = 15 m. Figure 3 shows the phase speeds as a function of
wavelength for Kelvin–Helmholtz waves (C = 0), and then the speeds with the
large value C = 1.5. Figure 4 plots the time τ for a wave to grow by one factor of
e; note that the friction increases instability above the Kelvin–Helmholtz rate.

4.2. NO UPPER PLATE, STRONG STABLE DENSITY CONTRAST

As in the previous situation U = 5 m s−1 and h = l = 15 m. The governing equation
is (9) with �ρ/ρ = 0.02; this degree of stratification, which is within the observed
range (Lee, 1997; Lee et al., 1997), prevents growth of Kelvin–Helmholtz waves
at the longer wavelengths. Figure 5 shows wave phase speeds for three values of
the canopy friction: C set to 0, 0.3 and 1.5. Figure 6 shows the corresponding
growth-times τ .
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Figure 4. Time for the wave to exponentiate in the three-layer model with �ρ = 0, U = 5 m s−1

and h = l = 15 m.

4.3. AN UPPER PLATE AND A STRONG STABLE DENSITY CONTRAST

The governing equation is (4) with �ρ/ρ = 0.02 and all the other parameters also
the same as those used in 4.2 so that one can compare the capped and uncapped
cases directly. The results, displayed in Figures 7 and 8, should be contrasted with
Figures 5 and 6. The upper plate makes the instabilities an order of magnitude more
effective.

5. Discussion and Conclusions

Our study indicates that Jeffreys’ drag mechanism can provide useful insights into
waves and eddies in a forest canopy, although the model is much too simple for
realistic predictions of atmospheric behaviour. In this section we summarize the
potential of the drag mechanism, we outline the developments needed to produce
an acceptable atmospheric model, and we identify field observations that would
help further theoretical development.
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Figure 5. Wave phase speeds in the three-layer model with �ρ/ρ = 0.02, U = 5 m s−1 and
h = l = 15 m.

5.1. POTENTIAL OF THE DRAG MECHANISM

The long-wavelength behaviour found in this study should carry over into more
realistic models. Thus Figures 4, 6 and 8 show that Jeffreys’ drag mechanism is
more effective than the shear-instability mechanism at the longer wavelengths, a
behaviour that can also be deduced from the asymptotic forms of Equations (4) and
(7). Moreover, Jeffreys’ mechanism can work when shear instability is suppressed
by a too-stable stratification (refer to the text between Equations (5) and (6)), or
the geometry of the wind profile (Section 5.3). However, it is quite possible that
disturbances develop most readily when the Kelvin–Helmholtz and the Jeffreys’
instabilities work together, providing a hybrid that should not be identified as one
rather than the other. The suggestion by Lee et al. (1997) that the term ‘canopy
waves’ be used to avoid presumptions about the dynamics seems appropriate.

Figures 6 and 8 also illustrate that the instabilities are much more effective when
they are narrowly confined to the near-earth regions. In the model this was achieved
by placing a rigid plate at the top of the boundary layer, and although rigid plates
do not exist in the atmosphere over-reflecting layers can exist and can act just like
perfectly reflecting plates. So complex profiles that provide wave trapping by elev-
ated over-reflecting layers or other structures should show more long-wavelength
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Figure 6. Time for the wave to exponentiate in the three-layer model with �ρ/ρ = 0.02, U = 5 m s−1

and h = l = 15 m.

gustiness than simple profiles. This enhancement applies equally to drag instabilit-
ies and shear instabilities, and it should be observable in the climatology of canopy
waves.

A feature of Figures 4, 6 and 8 that is almost certainly incorrect is the ever-
increasing effectiveness of the instability as its wavelength decreases. When the
sudden jump of the Kelvin-Helmholtz profile is replaced by a continuous transition,
the growth rates of the instabilities peak at the scale of the transition region (Miles
and Howard, 1964). In addition to this transition scale, the canopy problem involves
the canopy depth h and the mixing-layer depth l (introduced in Section 3). These
scales will control the form of the instability at short wavelengths, and will almost
certainly select a wavelength for maximum growth rate.

5.2. COMPLEXITIES THAT MUST BE ADDED TO THE MODEL

The most distressing shortcoming of the model is its use of the long-wavelength
approximation, and this must be addressed to bring drag theory to a state compar-
able with modern shear-instability theory. This may prove difficult, since drag is
at root a non-linear, turbulent problem. Jeffreys used an integral method to replace
the complex spatial distribution of turbulent stresses by their net effect – the aero-
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Figure 7. Wave phase speeds in the two-layer model with �ρ/ρ = 0.02, U = 5 m s−1 and
h = l = 15 m.

dynamic drag at the surface. This provides a brilliant simplification of the problem,
but it is not at all obvious how to extend the approach to short-wavelength disturb-
ances. The alternative is a fully numerical approach, which we do not contemplate
attempting. However, if a suitable linearised formulation can be developed the next
step will be to contrast instabilities in log-linear wind profiles with instabilities in
free-shear wind profiles. Both forms have been postulated for the structure above
a canopy-and they have very different consequences for shear instabilities (Section
5.3).

5.3. POINTS FOR FIELD OBSERVATIONS

The structure of the mean boundary-layer flow provides the best clues to the
origin of any waves observed there. The clearest case is provided by the neutrally-
stratified state, since this is governed by Rayleigh’s inflection point theorem, which
may be stated as ‘An inviscid, neutrally stratified flow in which the shear increases
or decreases monotonically does not have any (linearized) shear instabilities’. The
classical boundary-layer profiles (log and log-linear) all satisfy this condition and
are thus immune from simple shear instabilities. Viscosity does allow Tollmein–
Schlichting instabilities in uninflected profiles, but these are very slow-growing
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Figure 8. Time for the wave to exponentiate in the two-layer model with �ρ/ρ = 0.02, U = 5 m s−1

and h = l = 15 m.

(Maslowe and Thompson, 1971) and are not regarded as serious contributors to
atmospheric activity.

The conventional view holds that the mean flow above a canopy obeys the
log-linear law, whence Rayleigh’s theorem would eliminate shear instabilities in
neutral or near-neutral conditions, leaving the field to Jeffreys’ mechanism or
whatever new theories could be devised. But Raupach et al. (1996) propose that
the flow above a canopy includes a free-shear layer with an inflection point. They
provide an analysis that extracts a shear scale for this layer and they show that the
observed wave spectrum is consistent with Kelvin–Helmholtz theory based on this
scale.

Thus a very interesting and potentially important direction for field research
would be to determine whether the flow above a forest canopy is, or is not,
inflection-free. And regardless of whether it has a shear layer, an accurate form
of the profile is essential to further computations of the spectrum of instabilities.
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Appendix A: Derivation of the Dispersion Relations

The unperturbed flow V0 of the model is

V0 = x̂V0 =
{

x̂U above the canopy layer
0 within the canopy layer.

(A1)

The instabilities have the form

{u,w, p, η} = {u′(z),w′(z), p′(z), η′(z)} exp ik(ct − x), (A2)

where {u′, w′} are the x and z components of the perturbation velocity, p′ is the
perturbation pressure and η′ is the vertical displacement of the streamlines. The
waves of interest have periods less than an hour so the derivations given here ignore
Coriolis accelerations from the outset (we have checked for subtle influences of
the Coriolis terms and have found none). Following Jeffreys’ original study, the
long-wavelength approximation is invoked: u′(z) and p′(z) are set constant within
each layer of the two-layer model and within each of the two lower layers of the
three-layer model.

The perturbed atmosphere is treated as in an ideal, incompressible fluid that
exchanges momentum with the tree canopy through aerodynamic drag. The
incompressibility condition applied to the wave (A2) produces

∂w′

∂z
= iku′. (A3)

Within a layer where u′(z) = ulayer is a constant the integration of (A3) leads to

w′(z) = a + (ikulayer)z, (A4)

where the constant a must be determined by a boundary condition.
Within each layer the linearized x-component of the momentum equation

reduces to

ρ

(
∂

∂t
+ V0

∂

∂x

)
u′ = −∂p′

∂x
+ F′

x (A5)

hence

ρi(c − V0)ku
′ = ikp′ + F′

x. (A6)
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The term F′
x is the wave component of the drag force (2) introduced when the mean

wind (10) is drawn down into the tree canopy. The column integral of the drag force
is given by (3), and the component exp ik(ct − x) is extracted by Fourier theory as∫
layer

F′
x dz =

{
1
2ρ2(C/h)U

2η′(x, 0, t) for the layer forced down into the canopy
0 for all other layers.

(A7)

The result (A7) is only correct for linear theory.
Integrating (A6) over the layer-depth L and using (A7) gives the long-

wavelength approximation

ρ2i(c − U)ku2L2 = ikL2p2 + 1

2
ρ2(C/h)U

2η(0), (A8)

for the upper layer of the two-layer model (Figure 1, and L2 = h) and the middle
layer of the three-layer model (Figure 2, and L2 = l). There is no drag term in the
lowest layer and (A6) gives directly

ρ1cu1 = p1. (A9)

DISPERSION RELATION FOR THE TWO-LAYER MODEL

The two-layer model is bounded by rigid plates at z = ±h, so w′(z) must be zero
at these points and (A4) yields

w′(z) =
{
iku2(z − h) upper layer
iku1(z + h) lower layer.

(A10)

The displacement η = w′(z)/ik(c − V0) must be continuous across the interface
of the two layers, hence

−hu2

(c − U)
= hu1

c
. (A11)

The pressure must also be continuous across the displaced interface, so from (A8),
(A9) and the hydrostatic condition of the mean state

ρ2(c − U)u2 +
[

i

2kh
ρ2(C/h)U

2 − ρ2g

]
hu1

c
= ρ1cu1 − ρ1g

hu1

c
. (A12)

The condition that (A11) and (A12) have a nontrivial solution provides the
dispersion relation

(c − U)2 + ρ1

ρ2
c2 − (ρ1 − ρ2)

ρ2
gh − i

2kh
CU 2 = 0. (A13)
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Since atmospheric inversions are in the regime ρ1 = ρ2 +�ρ with �ρ/ρ2 � 1
the densities of the layers can be set equal to their mean except in the difference
term to give the form (4) presented in the text.

DISPERSION RELATION FOR THE THREE-LAYER MODEL

The three-layer model builds on the two-layer model, replacing the upper plate
with an unbounded homogeneous flow. In this uppermost region the disturbance is
the bounded solution

{u,w, p, η} = u3

{
1,−i, ρ2(c − U),

−1

(c − U)k

}
exp[ik(ct − x) − kz]. (A14)

In the middle layer, which has depth l, (A4) and (A8) become

ρ2i(c − U)ku2l = iklp2 + 1
2ρ2(C/h)U

2η(0)
w′(z) = w′(l) + iku2(z − l).

}
(A15)

Continuity of pressure and displacement at z = l relates the fields (A14) and
(A15), requiring that

iw′(l)ρ2(c − U) = p2. (A16)

The lowest layer still obeys (A9) and (A10)

ρ1cu1 = p1

w′(z) = iku1(z + h)

}
(A17)

and continuity of pressure and displacement at the displaced interface of the lower
two layers requires

η(0) = w′(l) − iku2l

ik(c − U)
= u1h

c
(A18)

and

iw′(l)ρ2(c − U) =
[
ρ1c − h

c
g(ρ1 − ρ2)

]
u11. (A19)

The condition that (A15) through (A19) have a nontrivial solution provides the
dispersion relation. In the approximation that ρ1 = ρ2 + �ρ with �ρ/ρ2 � 1
the densities of the layers can be set equal to their mean except in the gravitational
term to yield the result (7) presented in the text.
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