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ABSTRACT

The causes of the appearance of a tail in the power spectrum of a gravity wave train in a shearing background
terminating under the Hodges condition are studied. The power spectrum of this train for a wavenumber greater
than the cutoff value has amplitudes and slopes similar to the observed in actual wind profiles. It is shown that
the Fourier transform for large wavenumbers can be expressed as an inverse power series of the wavenumber,
where the first two terms are dominant (k21 and k22) with a power spectrum slope from 22 to 24 in the tail.
The main features that produce the tail are the discontinuities in the profile.

An observed profile is analyzed showing that the power spectral amplitudes do not necessarily come from
the waves contained in the profile; they can arise from irregularities, nonperiodic jumps that could be interpreted
as discontinuities.

1. Introduction

The power spectrum (PS) of horizontal winds and
temperatures along vertical profiles in very different
geographical locations and height ranges present some
sort of universal behavior. First reported by VanZandt
(1982), these results and subsequent works suggest that
the slopes of the spectra are in a range from 23.1 to
22.4 (Allen and Vincent 1995). With the purpose of
explaining this spectral shape a number of theoretical
works were carried out. These works can be classified
into three categories: 1) saturation models (Dewan and
Good 1986), which involve saturated waves caused by
convective and shear instability limiting the exponential
growth; 2) Doppler spread (Hines 1991) where the tail
is a consequence of Doppler spreading by background
winds generated by the wave system itself; and 3) dif-
fusive models (Weinstock 1990) in which there are in-
teractions among waves through diffusive processes.

There are works that associate the spectral tail to
terminating waves; Sato and Yamada (1994) showed
that the spectrum of one terminating wave, with satu-
ration amplitude, has a slope of 24 for internal waves
and of 23 for inertial waves. Recently, Chimonas
(1997) proposed a new model to simulate wind irreg-
ularities using a train of quasi-random gravity shear
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waves (gravity waves propagating in a shearing back-
ground). This results in a wind profile perturbation giv-
ing a PS tail with appropriate slopes and amplitudes.
The profile so constructed shows similarities with mea-
sured profiles. Reanalyzing the data, Chimonas observes
that the real spectrum terminates at a cutoff wave-
number, m*, where the overturning starts (N 2 5 0;
Hodges 1967). Further, he observes that the profiles,
when Fourier transformed, present a high wavenumber
tail with slope 22.7 and claims that this tail is an artifact
of the transformation. The wave terminations determine
the slope of the spectral tail.

The objective of this note is to present a study of the
spectral tail of a Fourier-transformed train of gravity
shear waves and to give an explanation for the slope
values. It is concluded that the tail is an effect of the
Fourier transform since the tail contains wavenumbers
larger than the actual cutoff of the waves. If disconti-
nuities in the profile or in any of its derivatives are
present, there will be a spectral tail formation. This ef-
fect calls to mind a similar one known as ‘‘leakage,’’
first noted in spectra of signals abruptly terminated at
the end of the sampling interval (Brigham 1974; Press
et al. 1992). We will find an expansion in inverse powers
of the wavenumber for wavenumbers larger than the
cutoff value, showing that with only the first few terms
of this expansion the tail is formed and the slopes lie
in the 24 to 22 range.

In section 5 we show that this ‘‘contamination’’ effect
is present in real profiles when they are Fourier trans-
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formed. Abrupt changes in the wind perturbation gen-
erate spectral amplitudes in high wavenumbers.

2. The model

The model we used is similar to Chimonas (1997).
A simplified description of it is given below, and the
reader will find more details in his work. Let us assume
a gravity wave propagating in an inviscid fluid with lx

k l, where lx and l are the horizontal and the vertical
wavelengths, respectively. The use of the plane defined
by the propagation direction and the vertical simplifies
the treatment.

The corresponding dispersion relation is

N
k 5 , (2.1)

c 2 U(z)

with k 5 2p/l , and N is the Brünt-Väisälä frequency
mean, c is the horizontal phase speed, and U(z) is the
background wind. In order to avoid the frequent use of
the factor 2p, we will also use m 5 1/l, in cycles per
meter, instead of k.

The background wind velocity is given, in a range of
altitudes, by

U 5 c 1 (z 2 zc)U9(zc), (2.2)

where zc is the altitude of the critical level.
From the linearized equations, the solution for the

perturbation of the vertical velocity will be (e.g., Tei-
telbaum and Sidi 1979)

w(x, z, t) 5 (z 2 zc)(1/2)6im exp[ikx(ct 2 x)],1/2Ar0

(2.3)

where m 5 Ri 2 ¼ and Ri is the Richardson numberÏ
for the background [Ri 5 N 2/U9(zc)]. The horizontal
component of the perturbation is

i ]w
u 5 2 . (2.4)

k ]zx

In the neighborhood of the critical level, the density
changes with altitude can be ignored; then

u(z) 5 B(z 2 zc)21/2 exp{6im log[C(z 2 zc)]}.
(2.5)

Since the wave will end somewhere between the
Hodges (1967) condition level and the critical level,
Chimonas suggested two possible cases: a sudden wave
termination exactly at the Hodges condition and a rel-
atively fast oscillating decay up to the critical level.

He found that the abrupt-termination case had a better
correspondence with the spectra of measured profiles.
Therefore, the equations used are [(A1) in Chimonas
1997]

 1/2z 2 z z 2 zc b cA cos 2m log z , zb1 2 1 1 22 z 2 z z 2 zc c bu 5 
0 z $ z , b

(2.6)

where zb is the point where the Hodges condition (N 2

5 0) is fulfilled.
Assuming the existence of many sources, there will

be a set of upward propagating waves with different
phase velocities. Therefore each wave will correspond
to a critical level height according to both its phase
velocity and the mean wind profile.

Supposing that the phase velocity space is quantified
in units of Dc, which are statistically independent, a
superposition of waves is constructed where each Dc is
associated with a terminating wave. Given the mean
wind profile, there exists a correspondence between Dc
and Dz, so one can interpret that each termination is
associated with a height interval Dz.

Both the altitude of the critical level within the in-
terval Dz and the wave amplitude between 0 and ub are
at random. Here, ub is the saturation amplitude (Fritts
1984), given by

u(zb) 5 |c 2 U(zb)|. (2.7)

Using the dispersion relation, the following expres-
sion for ub is obtained:

u(zb) 5 N/k*, (2.8)

where k* is the highest wavenumber present in the train
of waves.

The parameters are defined as in Chimonas (1997).
Both the distance between the Hodges condition altitude
and the critical level, and the interval Dz, are considered
of the order of 1/m*, which is the scale of the problem.
The mean Richardson number is taken as order of 10,
which is characteristic of stratospheric levels.

3. Mathematical considerations

Let us assume a vertical profile u(z) in the interval
[0, L]. The coefficients of its Fourier transform are given
by

L1
C 5 u(z) exp(2i2pnz/L) dz, (3.1)n EÏL 0

where n/L is the vertical wavenumber m.
If u(z) has N 1 1 discontinuities of any order (i.e.,

discontinuities in the function and/or any of its deriv-
atives), the integrating interval can be divided in, say,
N subintervals. Let us assume that the discontinuities
are located at zj, with j 5 0, . . . , N. Then the integral
(3.1) will be expressed as a sum of integrals as follows:

zN21 j111
C 5 u(z) exp(2i2pnz/L) dz, (3.2)On E

j50ÏL zj

where z0 5 0 and zN 5 L.
Since u(z) is analytical in (zj, zj11), we can integrate

it by parts to get
N21 ` (s)

11 u (z) zj11D 5 2 exp(2ikz) , (3.3)) 2O On zjs11(ik)j50 s50ÏL
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FIG. 1. Profile generated with the model. The superposition includes
30 propagating waves terminating abruptly. Altitudes are measured
in units of 1/m

*
, which is of the order of 1 km in the stratosphere.

Amplitudes are measured in units of N/k
*

.

FIG. 2. Power spectrum for the profile of Fig. 1. The full line
represents the power spectrum calculated with the Fourier transform;
the dashed line represents the approximation to the power spectrum
with the power series; and the straight line represents a fitting to the
Fourier spectrum.

where u (s)( ) is the s derivative evaluated in zj from1zj

the right, and u (s)( ) corresponds to the evaluation from2zj

the left. Thus the Fourier coefficients can be expanded
in negative powers of k. The series, Dn, is convergent
to the solution Cn for large enough k (Erdélyi 1956).

The s term in (3.3), written in terms of the discon-
tinuities, will be

N211
s s s sD 5 2 D u exp(2ikz ) 1 u (L) 2 u (0) ,On j j

s11 [ ]j51ÏL(ik)

(3.4)

where Dsuj 5 u (s)( ) 2 u (s)( ).1 2z zj j

The presence of discontinuities in the profile leads to
the generation of amplitudes in high wavenumbers.
From (3.3) the power spectrum will depend on inverse
powers of k (k2n with n $ 2).

Discontinuities at the interval ends [0, L] produce an
effect called ‘‘leakage’’ (Brigham 1982), similar to the
one described above. The leakage phenomenon is usu-
ally diminished by the use of windowing. It can be seen,
for example, that the use of a triangular window changes
the leakage from k22 to k24 because the discontinuity is
now on the derivative. For the case of the wave train,
since the discontinuities are inside the interval, the gen-
erated leakage will be called internal leakage.

4. Spectral analysis of the generated profiles

The model profiles (see section 2) have discontinu-
ities in the u(z) and successive derivatives in the points
zbj. The asymptotic expansion will be convergent to Cn

(3.4) if

N21

sD u exp(2ikz )O j jsD j51n 5 k , 1.N21s11) )Dn s11D u exp(2ikz )* *O j j
j51

Taking
sm

sD u 5j s(z 2 z )cj bj

and m* 5 1/(zcj 2 zbj), the ratio of successive terms is
sD 2pmn 5 .

s) )D mm*s11

The first term will be the dominant one if m .
(m/2p)m*. Conversely, for m , (m/2p)m*, for any s
order, the terms are of the same order and an approxi-
mation with few terms will not be possible. This can
be traced down to waves in the profile with that wave-
number m, as it can be seen in (3.4).

Simulations running the model were carried out; Fig.
1 shows a generated profile of u(z). The power spectrum
is then calculated using the Fourier transform and from
the series expansion in inverse powers. A good ap-
proximation is obtained using the series up to s 5 3 for
m . m*. In Fig. 2, the two PSs are compared. A least
squares fitting was also included in the graph. The slopes
obtained in the interval [m*, 8m*] can be seen in Table
1. Figure 2 also shows the role that threshold m* plays
quite clearly. Above m* the approximation closely
matches effects generated by the Fourier transform,
while below this threshold the PS and the approximation
depart drastically due to the presence of genuine waves.

To verify the stability of the used approximation, 30
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TABLE 1. Parameters from a least square fitting for the Fourier
power spectrum (FT) and for the inverse power series (approx). Or-
dinates are given in 8(2p )2 /N 2.3 2m Cn*

Type

Ordinate

FT Approx

Slope

FT Approx

Profile 0.317 0.283 22.89 22.90
Mean 0.726 0.693 22.88 22.91

FIG. 3. Mean power spectrum for 30 profiles simulated with the
model. The full line represents the mean of the Fourier transform
calculated power spectra; the dashed line represents the mean of the
approximations to every power spectrum with the series; and the
straight line is the best fit to the power spectrum.

FIG. 4. Perturbation of a measured wind profile. The measurements
used a drop sphere technique (Jimsphere) in Cape Kennedy on 16
April 1967. The perturbation has been multiplied by a Bartlett win-
dow.

profiles were simulated, and the resulting spectral mean
together with the spectral mean from the inverse power
series are shown in Fig. 3. There are only small differ-
ences, which one can ascribe to the discrete nature of
the data. Supporting this fact, the results with a larger
number of points show decreasing differences. Table 1
presents the results of fitting the mean PS with a least
squares procedure.

Fittings of the mean PS suggest three regions: a small
portion between m* and 1.5m* where the second and
third term of the series are dominant with slope 24, a
central region (1.5m* , m , 4m*) where the first and
second terms are dominant with slope close to 23, and
a region for greater wavenumbers with slopes close to
22.

A shared characteristic between the power spectra of
actual profiles and the present modeled results are the
oscillations observed in the tail. The dispersion of the
results arises from the discontinuities inside the interval,
and while in other works this was assigned to spectral
noise, Chimonas (1997) assigned it to the quasi-random
nature of the spectra generated. In fact, from Eq. (3.3)
it can be seen that the oscillations are related to the
factors exp(2ikz). To show this, let us work out an
example with only two discontinuities in the interval.
Taking into account only the first-order terms in the
expansion (3.3), the expression of the PS will be

1
2 2 2|D | 5 {Du 1 Du 1 2Du Du cos[k(z 2 z )]},n 1 2 1 2 2 12Lk

(4.1)

where Du1 and Du2 are the discontinuities in z1 and z2.
The oscillations in (4.1) have a ‘‘wavelength’’ in the

k space that depends on the distance between discon-
tinuities, from half a wavelength in the whole range of
m (i.e., with 0 # m # mc where mc corresponds to the
Nyquist frequency) to one wavelength every two har-
monics.

5. Analysis of an observed profile

In the following analysis, data from a measured pro-
file is used to show the existence of internal leakage.
The data, covering the 1–9-km height range, comes from
the Jimsphere technique (Endlich et al. 1969) and was
taken in Cape Kennedy, Florida, on 16 April 1967.

The wind perturbation is obtained subtracting a cu-
bical fit, interpreted as the background wind, from the

data (Eckermann et al. 1995). Then, applying a Bartlett
window (Brigham 1974), contributions from the ex-
tremes of the interval are lowered. Figure 4 shows the
resulting profile.

To identify discontinuity points, it is preferable to
examine the derivative of the profile. A simple way to
carry this out is to subtract the perturbation at successive
points [i.e., u(zi11) 2 u(zi)], which is shown in Fig. 5.
In this figure several spikes suggest the presence of
discontinuities. Being nonperiodic in nature, they will
behave as true discontinuities from the point of view of
the Fourier transform since they will result in a net
leakage effect.
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FIG. 5. Differences between successive points for the wind per-
turbation shown in Fig. 4. Notice the nonperiodic succession of jumps
in the differential. Values of these jumps are within what can be
considered normal.

FIG. 6. Function (5.1) for the harmonic corresponding to m 5 0.008
cycles m21 using the data shown in Fig. 4. A clear association between
steps and jumps of Fig. 5 is observed. To help with the association,
crosses mark the larger-jump positions.

FIG. 7. The solid line represents the power spectrum for the profile
of Fig. 4, and the dashed line the first-order estimation of the power
spectrum obtained from the power series (3.4) using only the 10
largest jumps. Notice the similarities in both the slopes and energy
content.

The following integral function will be useful to an-
alyze the contribution of the discontinuities to the Fou-
rier coefficient:

z1
C (z) 5 u(z) cos(2pnz/L 1 f ) dz, (5.1)n E nÏL z0

where f n is the phase of the nth harmonic. Also note
that from (3.1), |Cn | 5 Cn(z0 1 L).

In Fig. 6 function (5.1) is plotted for the particular
case of m 5 0.008 cycles m21. The crosses on the ab-
scissa axis represent the altitudes of the more prominent
jumps. Clearly, the integral function (5.1) presents steps
at the altitudes of these jumps, suggesting that the in-
ternal leakage is the dominant contribution to this mode
amplitude.

In order to estimate the contribution of the spikes to
the PS, we use Eq. (3.3) for s 5 0 and taking only the
10 largest jumps. Figure 7 shows the so calculated PS
together with the PS from the Fourier transform.

Notice that in the tail, both PS have similar energy
content. Again, we suggest that the internal leakage cre-
ated by nonperiodic jumps is dominant in the generation
of the PS tail. The amplitude of the mode at hand is
1.05, while the approximation dominated by disconti-
nuities gives 0.74. Also, the phase of this mode is dom-
inated by the larger discontinuities with a value of 2.73,
while 2.61 is the estimated one. Only when the super-
position (3.3) is destructive, one notices increasingly
important contributions from other points to the gen-
eration of the PS tail.

The analysis is independent of the quantitative values
of the jumps, and the most important characteristic is
their nonperiodicity. Even when the large jumps are
somehow removed, there will be probably a larger num-
ber of smaller nonperiodic jumps taking over the leak-
age effect.

In other words, we would need a set of periodic jumps
to avoid the appearance of internal leakage. This kind
of periodicity has never been observed in actual profiles.

6. Discussion and conclusions

Every time wind profiles are Fourier transformed,
there appears a spectrum different from the expected
one; we can call this contamination in the sense that the
energy content is spread and accumulation occurs at
large wavenumbers. The latter, as we have shown, is a
consequence of the lack of regularity, and the spreading
results in a tail with slopes ranging from 22 to 24.
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Undoubtedly, these effects are important in observed
profiles, as seen above, and we would like to point out
the need for a more systematic quantification of the
energy due to the internal leakage in these profiles.

So far, the spectra from real profiles have been an-
alyzed in terms of wave content in the profiles and there-
fore been thought in terms of physical processes. Our
approach is different since we are analyzing the spectra
as being the consequence of mathematical effects related
to the Fourier transform. So, we find effects not related
to waves that nevertheless generate amplitudes in the
PS, and, what is very important, with slopes close to
the observed ones.

The internal leakage is not only produced by the grav-
ity wave termination but also by possible errors in the
measurements as well as by isentropic advection of air
parcels carried by the gravity wave field (Eckermann
1999). These processes generate amplitudes in the tail
spectrum with slopes similar to the measured ones.

The expansion (3.4) takes into account processes such
as changes in the wavelength and amplitude in the pre-
breaking region—via the Taylor–Goldstein equation—
which present internal leakage.

The prevailing models (Dewan and Good 1986) used
to explain the PS tail are based on constant amplitude
and wavelength across the interval. From Figs. 5 and
6, the high-wavenumber contributions come, in general,
from very well defined height ranges, and therefore the
terminating wave approaches are representative of these
kind of effects.
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