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ABSTRACT

Ray techniques are a promising tool for developing orographic gravity wave drag schemes. However, the

modeling of the propagation of orographic waves using standard ray theory in realistic background wind

conditions usually encounters several regions, called caustics, where the first-order ray approximation breaks

down. In this work the authors develop a higher-order approximation than standard ray theory, named the

Gaussian beam approximation, for orographic gravity waves in a background wind that depends on height.

The analytical results show that this formulation is free of the singularities that arise in ray theory. Orographic

gravity waves that propagate in a background wind that turns with height—the same conditions as in the work

of Shutts—are examined under the Gaussian beam approximation. The evolution of the amplitude is well

defined in this approximation even at caustics and at the forcing level. When comparing results from the

Gaussian beam approximation with high-resolution numerical simulations that compute the exact solution,

there is good agreement of the amplitude and phase fields. Realistic orography is represented by means

of a superposition of multiple Gaussians in wavenumber space that fit the spectrum of the orography.

The technique appears to give a good representation of the disturbances generated by flow over realistic

orography.

1. Introduction

Momentum flux divergences produced by unresolved

gravity waves are modeled in climate models by means of

parameterizations. The effects of these small-scale waves

appear to be so ubiquitous and systematic that particular

patterns in the zonal mean general circulation cannot be

modeled properly in climate and weather forecast models

without considering them. For instance, aspects of the

temperature and surface pressure fields (Palmer et al.

1986; McFarlane 1987) and the closing of the mesospheric

jets (Lindzen 1981) are not well represented. Further-

more, recent studies suggest that unresolved gravity wave

drag, which is prescribed by parameterizations, plays an

important role in driving the strength of the Brewer–

Dobson circulation (Alexander and Rosenlof 1996;

Pulido and Thuburn 2008) and its response to climate

change (Li et al. 2008; McLandress and Shepherd 2009).

Therefore, the correct representation of gravity wave ef-

fects is essential to obtain conclusive results.

In general there are two kinds of gravity wave param-

eterizations in climate models. The first represents the

effects of waves generated by subgrid orography (e.g., Lott

and Miller 1997; Webster et al. 2003). These parameteri-

zations are assumed to represent waves with zero absolute

frequency. The second kind (known as nonorographic

gravity wave parameterizations) is assumed to represent

all the rest of the frequency spectrum (e.g., Hines 1997;

Scinocca 2003). In general both kinds of parameteriza-

tions assume steady-state and only vertical propagation.

There are several studies that model the propagation

and dissipation of the wave field by means of ray theory

(e.g., Marks and Eckermann 1995; Bühler et al. 1999;

Broutman et al. 2006; Hasha et al. 2008). In this ap-

proach both horizontal and vertical wave propagation

are modeled, including the refraction of the wave field

by horizontal background wind changes, so that many of
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the assumptions of current gravity wave parameteriza-

tions may be relaxed under ray theory. Wave propagation

from localized and transient sources can be modeled

properly under this representation. This approach ap-

pears to be one of the most promising for future param-

eterizations to represent realistically gravity wave effects

in climate models.

A wave train is a system of waves that has a dominant

wavenumber. The amplitude may vary with the position

but only slowly compared to the dominant wavelength

(Bretherton and Garrett 1968). We refer to this as the

slowly varying wave train approximation. Ray theory is

based on the slowly varying wave train approximation

in which the approximated solution is expressed in the

form

F(x, y, z) 5 A(x, y, z) exp[i��1c(x, y, z)], (1)

where F is a wave field (e.g., vertical displacement), A is

an amplitude function that needs to be determined, f [

�21c is the phase, and � is a small nondimensional pa-

rameter. The phase may depend nonlinearly on x, y, and z.

Bretherton (1969) introduces the wave train analysis for

internal gravity waves and discusses in detail the formal

expansion in the small parameter �.

In this work we deal with gravity waves generated by

steady mean flows over fixed orography. The solution is

then time independent, hence the approximated solu-

tion (1). In time-dependent problems the functions A

and f in (1) are also a function of t.

The wave equations may be expressed as an asymptotic

series in the small parameter �. In the limit � / 0 the

resulting first-order equations for A and c are dominant

and are known in general as the transport and eikonal

equations, respectively (e.g., Lewis 1965). The solutions

for these first-order equations give A and c, which in (1)

represent a good approximate solution of the wave

problem. The transport and eikonal equations for the

gravity wave equations are obtained in Tanushev et al.

(2007).

For nonuniform background flows, ray theory needs

a further assumption that the spatial scale of background

flow changes must be longer than the dominant wave-

length of the wave train. This assumption is known as the

Wentzel–Kramers–Brillouin–Jeffries (WKBJ) approxima-

tion. In terms of gravity wave parameterizations this scale

separation hypothesis of ray theory is in accord with the

gravity wave parameterization assumptions. The param-

eterizations assume that the well-resolved spectrum of

climate models may be considered as the mean flow upon

which the unresolved small-scale waves are propagating.

These small-scale waves are the ones modeled by the

parameterization.

First-order ray theory when representing the wave

field in the whole physical domain is only valid far from

the source or from the forcing boundary. To overcome

this limitation, Broutman et al. (2001) suggested in-

tegrating the full linear solution near the source, which is

obtained under the WKBJ approximation. The station-

ary phase approximation of this near-field solution is

used to initialize the ray tracing technique that is then

used far from the sources. The ray tracing technique

implemented in Broutman et al. (2001) includes the

calculation of wave action density.

However, there is another problem that appears in

spatial ray theory far from the source. Rays focus in re-

gions where the volume of ray tubes becomes zero; in these

regions the amplitude contains a singularity under spatial

ray theory. Such regions are usually called ‘‘caustics’’ (e.g.,

Lighthill 1978). Caustics have a simple physical interpre-

tation in the context of electromagnetic theory: they are

the boundary of shadow regions. In the neighborhood of

caustics spatial ray solutions break down and singularities

appear. The singularities are an artifact of the approxi-

mation and are absent at higher-order approximations.

Some of the state-of-the-art ray techniques (e.g., Marks

and Eckermann 1995; Hasha et al. 2008) make a strong

approximation: the cross-sectional area of ray tubes is

constant along the entire ray. The cross-sectional area is

taken perpendicular to the rays that compose the thin

tube. The assumption of constant area avoids the ap-

pearance of caustics.

There are some attempts to represent more precisely

the wave amplitude evolution using the area of ray tubes

given by ray theory where the area is nonzero. At the

points where the cross-sectional area of ray tubes is zero

a caustic exists. Therefore, an alternative method needs

to be proposed to calculate the wave field at caustics

and their neighborhood. Broutman et al. (2002) propose

using Maslov’s method to calculate the wave field at the

singularity points. In this method the wave field is rep-

resented locally in the neighborhood of caustics as the

Maslov integral. The Maslov integral represents the wave

field in the neighborhood of caustics as the Fourier

transform from wavenumber space to physical space of

the ray theory approximated solution.

This work proposes an alternative methodology to

solve the breakdown of spatial ray theory in both situa-

tions, near sources and near caustics. The suggestion is to

use a higher-order approximation in the asymptotic ex-

pansion instead of using the full linear integral solution or

the Maslov integral. In this sense, the phase function is

represented as in ray theory and stationary phase method

up to the second order in a Taylor series around the

characteristic/central wavenumber. On the other hand,

the amplitude function is represented as an exact solution
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to the slowly varying wave train problem. A simpler ap-

plication of this methodology is used in Pulido and Rodas

(2008) for transient gravity waves propagating in a shear

flow. A particular comparison with the full linear integral

solution shows that the proposed approximation—the

Gaussian beam approximation—gives encouraging re-

sults. In particular, the short time behavior and the be-

havior near the critical levels are well modeled.

In standard ray theory, the wave field is determined by

the contribution of wave packets that are assumed to be

concentrated in space and propagate along rays. The wave

packets are assumed to be composed locally of a single

monochromatic wavenumber, the central wavenumber.

On the other hand, the Gaussian beam approximation

assumes that the wave field is composed locally of a

Gaussian spectrum centered at the central wavenumber.

This Gaussian spectrum generates a beam of rays around

the central one; in this way diffractive effects are con-

sidered in this approximation. In this sense, the Gaussian

beam approximation explicitly deals with the width of the

wave packet and therefore the conservation of the wave

action in a ray beam is considered in a self-consistent way.

The Gaussian beam approximation is used extensively

in other contexts, such as electromagnetism (e.g., Heyman

and Felsen 2001) and quantum mechanics [the treatment

of Gaussian states—so-called coherent states—for the

time-dependent Schrödinger equation is developed in

Hagedorn (1985) and references therein]. There are also

mathematically rigorous results by Hagedorn (1984) on

the convergence of the approximation for the nondisper-

sive wave equation in inhomogeneous media.

Gaussian beam solutions for mountain waves are also

examined in Tanushev et al. (2007). A formal proof is

derived there, showing that the system is well posed and

that the Gaussian beam stationary solution is close to

the time-dependent full integral solution.

2. Mathematical formulation

Consider orographic waves forced by mountains whose

horizontal scales are such that rotation and nonhydro-

static effects may be neglected. The forced waves propa-

gate in a time-independent horizontally uniform mean

flow that depends on height, U 5 [U(z), V(z)]. An ap-

proximated solution may be found if the mean flow

changes slowly with height compared to the vertical

wavelength. This is the well-known WKBJ approximation

that, in the examined case, is satisfied for large Richardson

number, Ri 5 N2/jdzUj2 � 1, where the Brunt–Väisälä

frequency N is constant. Under this approximation the

local vertical wavenumber of stationary gravity waves

forced by mean flow over orography is given by

m 5
Njkj
U � k . (2)

The horizontal wavenumber is k 5 (k, l). The sign of m

in (2) is the same as the sign of U � k so that only waves

propagating upward are considered. The relation (2) ob-

tained under the WKBJ approximation excludes wave

reflections.

The vertical displacement for a single sinusoidal wave

in the WKBJ approximation is

h(x, y, z) 5 h
0

m

m
0

� �1/2

exp i kx 1 ly 1

ðz

0

m(z9) dz9

� �� �
, (3)

where m0 5 m(z 5 0) is the vertical wavenumber at the

bottom boundary. This particular WKBJ solution (3)

has been extensively used in previous works (e.g., Shutts

1998; Broutman et al. 2002). Hereinafter we deal with

complex expressions; physical quantities must be inter-

preted as the real part of the complex expressions.

The general solution for forced waves generated by

an isolated mountain or a mountain range may be de-

termined by a linear superposition of (3),

h(x, y, z) 5

ð ð
ĥ(k, l)Q(m/m

0
)

m

m
0

� �1/2

3 exp i kx 1 ly 1

ðz

0

m(z9) dz

� �� �
dk dl, (4)

where ĥ(k, l) is determined by the bottom boundary

condition and Q is the Heaviside function. This Heaviside

function eliminates the sinusoidal waves that encounter

a critical level above that level. Since the radiation con-

dition has been used, only waves propagating upward are

represented in (4).

We consider a small-amplitude mountain height h(x, y)

so that we impose the linearized bottom boundary con-

dition on (4) at z 5 0. The resulting bottom boundary

condition in wavenumber space is

ĥ(k, l) 5 ĥ(k, l), (5)

where ĥ(k, l) is the two-dimensional Fourier transform

of h(x, y).

Equation (4) represents the general solution to the lin-

ear conservative system under the WKBJ approximation.

However, the integral (4) can only be solved analytically in

highly simplified cases. From the numerical point of view,

the calculation of (4) is a very expensive method to be

implemented as a parameterization of subgrid scales in

a climate model. The alternative is to make assumptions

about the spectral amplitude ĥ(k, l) in order to solve the
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integral analytically. There is a well-known method of

approximating this integral: ray theory. Strictly, ray the-

ory and the related equation that governs wave ampli-

tude, known as the wave action conservation equation

(Bretherton and Garrett 1968), are derived using the

slowly varying wave train assumption in physical space

(see, e.g., Bretherton 1969).

The slowly varying wave train assumption taken in ray

theory imposes a restriction on the amplitude of the

disturbance. The envelope amplitude of the disturbance

must vary slowly compared to the wavelength scale so

that the width of the envelope encompasses several

wavelengths. This assumption can also be interpreted in

wavenumber space; that is, the spectrum of the distur-

bance must be locally a narrow peak around the char-

acteristic wavenumber. The mapping between points

in wavenumber space and points in physical space is,

therefore, justified. As will be seen below, this assump-

tion is also a central hypothesis in the Gaussian beam

approximation.

Under the slowly varying wave train assumption, the

disturbance may be represented locally as a plane wave

with a well-defined wavenumber. If the phase of the

disturbance is f, the local wavenumber is given by

K 5�$f. (6)

The propagation of the disturbance is concentrated in

space along well-defined paths:

d
z
X 5 (d

z
x, d

z
y) 5 (�›

k
m, �›

l
m). (7)

The derivatives ›km, ›lm in (7) along the spatial rays

represent the local dispersion rates in physical space of

a group of waves. These derivatives may be considered as

the ‘‘group velocity’’ for a time-independent problem.

Note that, since we examine stationary gravity waves

generated by a time-independent mean flow over orog-

raphy, the concept of wave group velocity does not need

to be introduced. Ray tubes extend from the sources to

the sinks independently of time.

Although ray theory and the stationary phase method

in particular are well known in fluid dynamics (e.g.,

Lighthill 1978), we give here a short description of the

methods with a unified notation so that the similarities

and differences with the Gaussian beam approximation

are more clearly established.

a. Method of stationary phase

We take s as the length of the ray, that is, ds 5 (dx2 1

dy2 1 dz2)1/2, as the independent parameter, which is

expected to be arbitrarily large. This parameter plays the

same role as t in the standard stationary phase method for

transient wave disturbances (Lighthill 1978). The solution

(4) is expressed as

h(x, y, z) 5

ð ð
~h(k, l, z) exp[if(k, l, z)] dk dl, (8)

where f 5 kx 1 ly 1
Ð z

0 m(z9) dz9 is the phase. We are

interested in the asymptotic behavior of the integral (8)

when s / ‘ for fixed values of x/s, y/s and
Ð z

0 m(z9) dz/s.

Under the WKBJ approximation, the spectral ampli-

tude in (8), from (4), is

~h(k, l, z) 5 ĥ(k, l)Q(m/m
0
)

m

m
0

� �1/2

. (9)

The functions ~h(k, l, z) and f (k, l, z) are expanded as

a Taylor series around the central wavenumber kc of the

wave train found at (x, y, z). We only take the first term

in the Taylor series of the amplitude:

~h(k, l, z) ’ ~h
c
. (10)

Hereinafter, the subscript c means evaluation at the

central wavenumber; for example, ~hc [ ~h(kc, lc).

Since the exponential is a rapidly varying function, the

method takes up to second order in the Taylor series of

the phase

f(k, l, z) ’ f
c
1

1

2
›2

k
i
k

j
f

c
(k

i
� k

ci
)(k

j
� k

cj
) 1 � � � , (11)

where the usual suffix convention is used—that is,

a suffix that appears twice within a term must be inter-

preted as a sum over the index range, �2

i51aibi [ ajb j.

The integration of (8) for large s is dominated by the

stationary phase points, ›
ki
f

c
5 0. In general, sinusoidal

waves that compose the integral (8) cancel by destructive

interference, except at stationary phase points. Then, the

asymptotic value for large s of the integral in (8) is entirely

determined by the stationary phase points. A formal

proof of this result may be derived using Cauchy’s theo-

rem (e.g., Lighthill 1978). The Taylor series of the phase

(11) is taken around kc along the curve where the sta-

tionary phase points are located, ›
ki

f
c

5 0.

Then, replacing (10) and (11) in (8), the asymptotic

wave field yields

h(x, y, z) 5 ~h
c

exp(if
c
)

3

ð‘

0

ð‘

0

exp i
1

2
›2

k
i
k

j
f

c
(k

i
� k

ci
)(k

j
� k

cj
)

� �
dk

1
dk

2
.

(12)

Solving the Gaussian error integral in (12) gives
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h(x, y, z) 5 2p(›2
kkf

c
›2

llfc
� ›2

klfc
)�1/2~h

c
exp(if

c
), (13)

where ~hc 5 ĥc(mc/m0c)1/2
Q(mc/m0c).

b. Amplitude using ray tubes

Ray theory is based on the assumption that one can

expand the amplitude term and the phase function as a

power series of a small parameter. The exponential with

the phase function as argument is assumed to be highly

varying compared to the amplitude function. The energy

of the disturbance components is then concentrated along

the rays with a well-defined wavenumber. In this con-

servative system the horizontally integrated vertical wave

action flux is constant, so for a thin ray tube the vertical

wave action flux times the area of the ray tube horizontal

cross section is constant (Lighthill 1978).

A simple proof of the wave amplitude dependence

under the assumptions of ray theory is found using the

Parseval theorem in a neighborhood of the point in con-

sideration. The main contribution to the amplitude in

wavenumber space is coming from the spectral amplitude

of the mode whose ray crosses the point in consideration.

The relation between the square of the amplitude in

physical space and the power spectrum is found by mul-

tiplying (8) by h(x, y, z)* and integrating in space; this

results in the Parseval theorem:1

ð ð
jhj2 dx dy 5 (2p)1/2

ð ð
j~hj2 dk dl. (14)

The integral in the rhs of (14) is assumed to be dominated

by the contributions around the central wavenumber kc,Ð Ð
j~hcj

2 dk dl ’ j~hcj
2

Dk Dl; then it is transformed from

the wavenumber space k, l to the physical space x, y

jh(x, y, z)j2 5 (2p)2j~h
c
j2 J

x, y

k, l

� �����
c

� ��1

, (15)

where J is the Jacobian of the transformation from the

physical space to the wavenumber space evaluated at

the central wavenumber. From (9), we obtain

jh(x, y, z)j2 5 (2p)2jĥ
c
j2

m
c

m
0c

Q
m

c

m
0c

� �
J

x, y

k, l

� �����
c

� ��1

. (16)

An alternative proof of (16) is given in Shutts (1998),

using that the vertical component of the wave action flux

is constant along a ray.

The Jacobian may be expressed as a function of the

phase f. Using (7), the Jacobian yields

J
x, y

k, l

� �
5 ›2

kkf›2
llf� (›2

klf)2. (17)

Note that multiplying the stationary phase solution,

(13), by its complex conjugate gives the same expression

for the amplitude as in the ray tube approximation, (16).

c. Gaussian beam approximation

To derive the approximate solution under the Gaussian

beam approximation we again consider a solution of the

form (8) and assume that we are in an asymptotic regime

where the s parameter is large enough that the solution

may be represented as the first terms in the asymptotic

expansion. The Gaussian beam approximation is in-

troduced by Cerveny et al. (1982) and Popov (1982) as

a representation of seismic wave fields. Tanushev et al.

(2007) give a formal proof of Gaussian beams as an ap-

proximate solution to the mountain wave field.

The amplitude in the wavenumber space is represented

locally as a concentrated envelope, namely a Gaussian,

around the central wavenumber kc; this is the wave-

number of the ray that is found at the position (x, y, z):

~h(k, l) 5 ĥ
c

m
c

m
0c

� �1/2

Q(m
c
/m

0c
)

3 exp �
(k� k

c
)2

2s2
k

�
(l � l

c
)2

2s2
l

" #
. (18)

As in the stationary phase method, we approximate

the phase function f in (8) up to the second order in

a Taylor series around the central wavenumber kc:

f(k
1
, k

2
) ’ f

c
1 ›

k
i
f

c
(k

i
� k

ci
)

1
1

2
›2

k
i
k

j
f

c
(k

i
� k

ci
)(k

j
� k

cj
) 1 � � � . (19)

Contrary to the stationary phase method, in Gaussian

beam approximation the first-order term in the Taylor

series of the phase, (19), is nonzero. This is because the

Gaussian beam approximation considers not only the

contribution of the central ray but also a neighborhood of

rays around it (the full beam of waves that compose the

Gaussian).

The resulting integral, replacing (18) and (19) in (8), is

1 The expression of the Parseval theorem, (14), is in complete

accordance with the conservation of the wave action. See Pulido

(2005) for a discussion of the relation between the Parseval theo-

rem and the wave action conservation equation. For the case in

consideration, the wave action conservation may be expressed

in wavenumber space as [U(z) � k]j~h(k, l, z)j2 5 const, where

~h(k, l, z) is the 2D Fourier transform at z.
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h(x, y, z) 5 ĥ
c

m
c

m
0c

� �1/2

Q(m
c
/m

0c
)

ð ð
exp �1

2
(k� k

c
)TA(k� k

c
) 1 pT � (k� k

c
)

� �
dk dl, (20)

where matrix A and vector p are defined as

A 5
s�2

k � i›
kk

f
c

�i›
kl

f
c

�i›
lk

f
c

s�2
l � i›

ll
f

c

" #
; p 5

i›
k
f

c

i›
l
f

c

� �
.

The integral in (20) can be solved exactly by completing

squares and diagonalizing matrix A (e.g., Greiner and

Reinhardt 1996); the result is

h(x, y, z) 5 2pĥ
c

m
c

m
0c

� �1/2Q(m
c
/m

0c
)ffiffiffiffiffiffiffiffiffiffiffi

detA
p

3 exp if
c
1

1

2
pTA�1p

� �
, (21)

where

detA 5 s�2
k s�2

l � ib � J, b 5
›

kk
f

c

s2
l

1
›

ll
f

c

s2
k

,

and J 5 ›kkfc›ufc 2 (›klfc)
2 is the Jacobian (17).

The solution is composed of an amplitude term and an

oscillatory term (exponential with the imaginary term).

The last is the carrier wave. In turn, the amplitude is

formed by the vertical wavenumber dependence, the in-

verse of the determinant of A and the Gaussian envelope.

This is the representation of the solution under

Gaussian beam approximation. The fundamental differ-

ence with first-order ray theory is that the amplitude

modulation of this representation is an exact solution of

the Schrödinger equation (Hagedorn 1984; Ostrovsky

and Potapov 1999). On the other hand, the ray tube ap-

proximation and stationary phase method are only the

first-order solutions of the asymptotic expansion.

There is a more subtle difference between ray tube and

Gaussian beam approximations, which is of paramount

importance. The Gaussian beam approximation takes into

account not only the central ray but also a beam of rays

around the central one that are contributing to the wave

field. In this way diffractive effects are included in the

approximation. This beam of rays is essential to eliminate

the singularities that arise in standard ray theory.

The stationary phase solution is by construction the

dominant term far from the source for s / ‘; in accor-

dance with this, the Gaussian beam solution goes to the

stationary phase solution in that limit. In other terms, the

Gaussian beam solution is different from the stationary

phase solution only where the stationary phase assump-

tion is not satisfied; therefore, higher-order terms produce

an important contribution. In the regions where the sta-

tionary phase solution is a good approximation, the

Gaussian beam solution will be close to the stationary

phase solution and only small differences coming from the

small higher-order terms are expected. The stationary

phase solution is recovered assuming that we have a wide

Gaussian, sk, sl, / ‘ in (18), so that the spectrum goes to

a constant. In this limit (21) tends to (13). In general, for

large s and if the rays are separated, (13) is close to (21)

(the J term is dominant). On the other hand, when the

rays converge to a caustic or diverge from the forcing

level, J / 0, then the other terms in (21) contribute

significantly.

3. Numerical simulations

Several numerical simulations were performed in order

to evaluate the Gaussian beam approximation in the

context of orographic gravity waves generated by local-

ized mountains. To compare the approximation with the

exact solution, we use as the ‘‘exact solution’’ the nu-

merical model described in Pulido (2005) that solves the

Taylor–Goldstein equation, using a fourth-order Runge–

Kutta algorithm, in the wavenumber space. The spectrum

is resolved by 1024 3 1024 components. This high reso-

lution is essential for the cases in which a critical level is

present. The result is then Fourier transformed to the

physical space. In what follows this high-resolution nu-

merical solution is called the ‘‘exact case’’ (even though

some numerical effects due to the application of the dis-

crete Fourier transform may be found).

The numerical computation of the Gaussian beam

approximation only involves an evaluation of (21). Note

that (21) is expressed directly in physical space.

Two background conditions are considered: a constant

wind and a wind turning with height (Shutts 1998). The

last case has already been treated in several publications

(e.g., Broad 1999; Broutman et al. 2001). It gives the

possibility of testing the approximation under two char-

acteristic features, caustics (Broutman et al. 2002) and

multiple critical levels for which each wave that composes

the spectrum has a critical level at a different height (these

critical levels were called 3D critical levels by Broad).

A first set of experiments uses a Gaussian modulated

wave of carrier wavenumber kc (e.g., Martin and Lott

2007) as orographic forcing, which enables a direct

comparison with the basic representation of the Gaussian

beam approximation. Then non-Gaussian forcings, in

particular a bell shape and a case study of realistic
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orography, are investigated through a superposition of

Gaussians of the form (21). In the current algorithm each

Gaussian contributes around its central ray until its am-

plitude contribution is negligible. Since the purpose of

this study is the evaluation of the approximation in a few

case studies, there is no need to further optimize the al-

gorithm. In practical implementations, it may be worth-

while to consider the contribution of each Gaussian in

a narrower spatial range around the central ray of the

Gaussian, for example, ;2s.

a. Single Gaussian beam

1) CONSTANT WIND

The orographic forcing that produces the disturbance

is a Gaussian modulated wave of carrier wavenumber kc,

in the physical space. This Gaussian modulated sinu-

soidal wave is represented by

h(x, y) 5 h
0

exp � x2

2s2
x

� y2

2s2
y

 !
ei(k

c
x1l

c
y). (22)

This Gaussian modulated sinusoidal wave is the basic

orographic forcing used in the Gaussian beam approxi-

mation. The Gaussian forcing generates a disturbance

that is concentrated around the central ray.

For the orographic forcing (22), the spectrum is given by

~h
0
(k, l) 5 ĥ

c
exp �

(k� k
c
)2

2s2
k

�
(l � l

c
)2

2s2
l

" #
(23)

with amplitude ĥ
c

5 h
0
/(2ps

k
s

l
). The central wave-

number is kc 5 2p/15 km, lc 5 1.5kc, and the widths

sk 5 sx
21 5 2p/10 km and sl 5 sy

21 5 2p/10 km. The

disturbance propagates in a constant wind U 5 10 m s21,

and the Brunt–Väisälä frequency is also set to a charac-

teristic value, N 5 0.01 s21.

At the forcing level the Gaussian beam approximation

(21) is exactly the Fourier transform of a Gaussian

wavenumber spectrum, so there are no differences be-

tween the exact and the approximated solutions (Fig. 1).

In other words, the full integral solution at z 5 0 is just

the inverse Fourier transform of (23), which is exactly

represented in (21).

As the disturbance propagates upward, the horizontal

group velocity is southeast, as seen in Fig. 2, and the maxi-

mum amplitude of the disturbance is found at particular

points of a parabola forming a localized branch of the

characteristic V-shape downstream pattern of isolated

mountains. Higher-order dispersive effects take place at

the head of the disturbance (the oscillations that are found

farthest from the mountain at a given height). Because the

Gaussian beam approximation only represents the dis-

persive effects up to second order, some slight differ-

ences in the exact solution may be detected there. On

the other hand, around the location of the central ray

the Gaussian beam approximation has a very precise

representation of the disturbance. The lower panels of

Fig. 2 show a y–z cross section at x 5 0. The Gaussian

beam approximation also presents a very good repre-

sentation of the disturbance in both limits close and far

from the source; only slight differences can be seen in

Fig. 2.

2) WIND TURNING WITH HEIGHT: CAUSTICS

We performed an experiment to evaluate the behav-

ior of the Gaussian beam approximation in the presence

of caustics. The background horizontal wind is constant

in x and linear in z, that is,

U 5 U
0
[1, (2p/km)�1z] (24)

in which U0 5 10 m s21, so that the wind vector is turning

with height (left panel of Fig. 3). The wave forcing is

a Gaussian spectrum whose the central wavenumber is

given by

k
c
5 2p/(20 km)[cos(0.108p), sin(0.108p)] (25)

and sk 5 sl 5 2p/(10 km). Rays belonging to this

spectrum launched at (x, y, z) 5 0 find a caustic at 5 km;

the right panel of Fig. 3 shows a tube of rays that con-

verge at the caustics. Note that to enhance the caustic

effect a broad spectrum compared to its wavenumber

FIG. 1. Vertical displacement (h/hc) of the wave disturbance at

the forcing level generated by a Gaussian modulated sinusoidal

wave. The mountain is represented with the h/hc 5 exp(21) con-

tour (dashed line).
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has been chosen. The existence of a caustic in this system

is first mentioned and treated in Broutman et al. (2002).

At the caustics the Jacobian, (17), goes to zero; how-

ever, the term det A, which is in the denominator of the

Gaussian beam solution (21), is not zero, so the solution is

well defined. Indeed, a cross section at the height of the

caustics (Fig. 4) shows that the disturbance is a Gaussian

wave packet with a slight deformation of the patterns

coming from dispersion and diffraction. The Gaussian

beam approximation (right panel of Fig. 4) gives almost

exactly the wave disturbance pattern (left panel of Fig. 4)

at the height of the caustic.

A vertical cross section is shown in Fig. 5. There are

small refractive effects; the focusing of the rays in physical

space is not found in the real disturbance. The Gaussian

beam approximation (right panel of Fig. 5) represents

very well the exact disturbance (left panel of Fig. 5) for

this case where a caustic exists, and there are almost no

visible differences between them (except for slight dis-

persive effects at high altitudes—;9 km, far from the

central ray—which are not well captured by Gaussian

beam approximation).

3) WIND TURNING WITH HEIGHT: MULTIPLE

CRITICAL LEVELS

One of the simplest cases where multiple critical levels

arise is the case of a wind in which the absolute value of

the wind velocity is constant and the direction is turning

with height (Broad 1999); that is,

U 5 U
0
[cos(bz 1 f

0
), sin(bz 1 f

0
)], (26)

where U0 5 10 m s21, b 5 p/10 km, and f0 5 2p/4.

The wave forcing is a Gaussian spectrum (23) with kc 5

2p/30 km, lc 5 0, and sk 5 sl 5 1.3kc. The sinusoidal

wave with the central wavenumber encounters a critical

level at zl 5 7.5 km.

Figure 6 shows the exact case (left panel) and the

Gaussian beam approximation (right panel). There are

important differences in the neighborhood of the critical

levels. The disturbance in the exact case is spread along

the full height range of critical levels. This is because

waves with higher critical levels than the central critical

level give an important contribution to the disturbance

FIG. 2. Vertical displacement (h/hc) of the wave disturbance generated by Gaussian modulated sinusoidal wave

orography: (top) horizontal cross section at z 5 2.8pU/N ’ 8.8 km and (bottom) a y–z cross section at x 5 0 km for

the (left) exact solution and (right) approximation.
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amplitude near their own critical levels. The Gaussian

beam approximation only accounts for the critical level of

the central wavenumber; thus, the disturbance for large s

is concentrated below that critical level. No waves are

found above that level. The Gaussian beam approxima-

tion is still a valid asymptotic expansion along the central

ray and particularly near the central critical level, far from

the source (say for s / ‘), so that it gives a precise

representation of the amplitude at the central ray.

b. Superposition of Gaussians

To examine more realistic cases a superposition

of Gaussian beams is used. In general we use about

256 Gaussian beams to represent the disturbance at the

forcing level. Once the characteristics of the Gaussian

beams (ĥc, kc, sk, sl) are determined, the wave distur-

bance is then calculated as a superposition of solutions

of the form (21).

The procedure to construct the superposition of

Gaussians in the wavenumber space is as follows. First,

the wavenumber space is divided into grid cells of side Dk,

Dl in the region where nonnegligible spectral amplitudes

are found. For instance, if we want a resolution of

256 Gaussians, the wavenumber region (kmin , k , kmax

and lmin , l , lmax) is divided in 16 bins in the k direction

and 16 bins in the l direction so that 256 cells are formed.

The wavenumber at the center of each cell is (kci, lcj) 5

[kmin 1 Dk(i 1 ½), lmin 1 Dl( j 1 ½)]; then for each cell

a Gaussian of the form (23) is constructed with central

wavenumber (kci, lcj) and width (sk, sl) 5 C(Dk, Dl),

where C is a constant. The Gaussian grid details and

Gaussian locations are illustrated in Fig. 7.

To calculate the amplitude ĥcij of the Gaussian, the

orography h(x, y) is Fourier transformed to obtain ĥ(k, l).

For idealized cases we calculate the analytical spectrum;

in realistic cases we use the fast Fourier transform to

FIG. 3. (left) Background wind zonal (dashed line) and meridional (continuous line) components. (right) Rays of

waves that belong to the disturbance in the y–z plane at x 5 0 km.

FIG. 4. Horizontal cross section at a height of 5 km of the vertical displacement (h/hc) of the wave disturbance in the

presence of a caustic at 5 km: (left) the exact solution and (right) the Gaussian beam approximation.
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calculate the spectrum. Then, the amplitude of the

Gaussian is determined from

ĥ
cij

5 (ps
k
s

l
)�1/2

ðk
ci
1Dk/2

k
ci
�Dk/2

ðl
ci
1Dl/2

l
ci
�Dl/2

jĥ(k, l)j2 dk dl

" #1/2

. (27)

In this way the algorithm conserves wave energy. In

general, we establish a threshold of minimum ampli-

tude for the Gaussians: if the amplitude of a particular

Gaussian is smaller than the threshold, the Gaussian is

not considered to construct the superposition of Gaussian

beams.

The constant C that determines the width of the

Gaussian beams is the only free parameter of the algo-

rithm. We tune it so that the superposition of Gaussians

of the form (23) fits optimally the Fourier transform

of the orography ĥ(k, l). Characteristic values of C are

0.38–0.45.

1) A BELL IN A CONSTANT WIND

A rather standard case of a localized mountain is the

bell-shaped function (e.g., Smith 1980):

h(x, y) 5 h
0
[1 1 a�2(x2 1 y2)]�3/2. (28)

FIG. 5. Vertical–meridional cross section of the vertical displacement (h/hc) at x 5 0 km in the presence of a caustic at

5 km: (left) the exact solution and (right) the Gaussian beam approximation.

FIG. 6. Vertical cross section at x 5 0 km of the vertical displacement (h/hc) generated by a Gaussian beam in

a background wind with constant magnitude that turns with height: (left) the exact solution and (right) the Gaussian

beam approximation.
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The energy of the disturbance at a fixed height is con-

centrated along the characteristic V-shaped downstream

ship-wave pattern. In particular, the pattern of the dis-

turbance forms a parabola with its vertex at the origin

(Smith 1980). This parabola is produced by rays of different

wavenumbers that compose the disturbance. The longer

the wavelengths and the larger the angle to the background

wind, the further the wave propagates downstream. At a

given height, long-wavelength waves produce the highest

amplitudes.

In the hydrostatic approximation this case cannot be

modeled with a single Gaussian beam since the second

derivative of the phase, ›
kik j

f (i, j 5 1, 2), in one of the

principal axes vanishes. For the case of a Gaussian beam

superposition, we avoid the zero wavenumber as central

wavenumber to form the spectrum of the bell-shaped

mountain. The spectrum to build the Gaussian beam

superposition is obtained by analytically Fourier trans-

forming (28). A cell grid of 20 3 20 is used, which covers

from kmin 5 lmin 5 23a21 to kmax 5 lmax 5 3a21.

The (exact) wave field at z 5 3.6U/N is shown in the left

panel of Fig. 8. The approximated wave field produced by

the Gaussian beam superposition can be seen in the middle

panel of Fig. 8. The approximation captures quite well the

V shape of the pattern, which is formed by each component

of the spectrum. The amplitude is also in general quite well

represented. Small differences can be found far from the

source (Fig. 8). Two effects may be contributing to these

slight differences. The waves that propagate farthest be-

long to the high-wavenumber part of the spectrum, which is

not well represented. The differences could also be pro-

duced by high-order dispersive effects that are not repre-

sented in the Gaussian beam approximation. Experiments

with a larger number of Gaussian beams diminish the dif-

ferences but do not eliminate them.

The right panel of Fig. 8 shows the stationary phase

solution except around the origin where the approxima-

tion is not bounded. Along the central ray and far from

the origin the stationary phase solution agrees with the

exact case. Near the vertical axis the stationary phase

solution is not precise; both the amplitude and the phase

are not well represented. The highest amplitude of the

‘‘exact’’ disturbance is found near the vertical axis so that

this is an essential region to be modeled for a gravity wave

drag scheme. On the other hand, the Gaussian beam

approximation (middle panel of Fig. 8) is in remarkably

good agreement with the exact case (right panel).

FIG. 7. Wavenumber space grid and the Gaussian locations. See

text for details.

FIG. 8. Vertical displacements (h/hc) of the wave disturbance generated by a bell-shaped mountain at z 5 3.6 km (3.6U/N).
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In a y–z cross section upstream from the source, the

two branches of the parabola are found, as seen in Fig. 9.

The amplitude of the Gaussian beam approximation

(middle panel) is slightly lower than the exact solution

(left panel). In general, both Gaussian beam and sta-

tionary phase approximations (right panel) are in good

agreement with the exact solution in this y–z cross section

far from the origin (x 5 52 km). Some Fourier effects due

to numerical wraparound of the solution as a result of

periodic boundary conditions are present in the exact

solution.

2) MULTIPLE CRITICAL LEVELS REVISED

In this experiment we model again the multiple criti-

cal levels case [see section 3b(3)], that is, a disturbance

generated by orographic forcing representing a Gauss-

ian modulated sinusoidal wave that propagates in a wind

turning with height. The disturbance is represented by

a superposition of Gaussian beams instead of a single

Gaussian beam. A 20 3 20 cell grid is used from kmin 5

lmin 5 23sk to kmax 5 lmax 5 3sk.

The perturbation found in the exact case (left panel

of Fig. 6) above the critical level of the central ray can be

well reproduced by a superposition of Gaussian beams

(Fig. 10). There are some slight differences between the

exact case and the Gaussian beam approximation because

of the difficulty in representing the small vertical wave-

lengths present in that height range (this is for both cases

the exact and the approximation).

The single Gaussian beam case contains only one crit-

ical level related to the central wavenumber, so the dis-

turbance is concentrated around the central ray (see left

panel of Fig. 6). On the other hand, for a superposition of

Gaussian beams each Gaussian beam has its own critical

level. The contributions of the Gaussian beams near their

critical levels are nonnegligible; thus, the height range of

the disturbance envelope for large s is wider than the

single Gaussian beam case. This broad height range of the

disturbance envelope is found in the exact case (left panel

of Fig. 6).

3) A CASE STUDY OF REALISTIC OROGRAPHY

So far we have examined disturbances generated by

simple analytical localized mountains. We now examine

orographic waves generated by realistic orography. We

take the orography from the tip of South America in the

latitudinal range from 45.98 to 51.98S and in the longi-

tudinal range from 648 to 808W. The orography belongs

to the Andes mountain range and presents a plateau

with several mountains, two of them reaching altitudes

FIG. 9. As in Fig. 8, but at x 5 52 km.

FIG. 10. As in Fig. 6, but for the wave disturbance represented by

a superposition of Gaussian beams. See exact solution in the left

panel of Fig. 6.
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higher than 1500 m, see Fig. 11. In low and high latitudes

a window has been imposed so that the orography goes

smoothly to zero at the boundaries to avoid leakage

effects when the orography is Fourier transformed to

obtain ĥðk, lÞ.
We again set characteristic background conditions;

the background wind is 10 m s21 and the Brunt Väisälä

frequency is 1022 s21. Note that we assume the back-

ground wind is uniform. This representation of the wind

is only used for evaluation of the technique, but results

might differ if horizontal or vertical shear of the back-

ground wind were taken into account.

The procedure is equivalent to the one performed for

idealized cases, except that the spectrum of the orography

is computed using a fast Fourier transform algorithm (in

the idealized cases the spectrum is calculated analytically).

The limits of the wavenumber space are kmax 5 2kmin 5

lmax 5 2lmin 5 8 3 1025 m21. Once the Gaussian pa-

rameters are known, a superposition of Gaussian beam

solutions (21) is computed in the physical domain.

A horizontal cross section at 3.6U/N of the orographic

waves generated by the mountain is shown in Fig. 12.

The disturbance is a superposition of the forcing by the

large-scale plateau, which generates a deformed parab-

ola similar to analytical cases (e.g., Fig. 8) and small-scale

perturbations generated by the peaks. In Fig. 12 the mid-

dle panel presents the Gaussian beam superposition with

a resolution of 50 3 50 grid cells. There are a total of 356

Gaussian beams (spectral amplitudes below a threshold,

0.01 times the maximum amplitude, are not represented).

A good representation of the large-scale perturbation is

obtained in the pattern and amplitude of the disturbance.

There is also good convergence to the exact wave distur-

bance when increasing the number of Gaussian beams.

The right panel shows the disturbance generated by 1447

Gaussian beam solutions with a resolution of 100 3 100 grid

cells and same threshold as the earlier case. The small-scale

features are better represented in this last case. Figure 13

presents a vertical cross section of the disturbance; good

agreement between the exact case and the Gaussian beam

approximation is also found in the x–z cross section.

4. Conclusions

Contrary to the ray tube approximation or the station-

ary phase method, which are only useful for the far-field

FIG. 11. Orography (km) from the tip of South America in the

latitudinal range 45.98–51.98S (after windowing).

FIG. 12. Vertical displacements (h/hc) of the wave disturbance at 3.6 km (3.6U/N): (left) the exact solution and for (middle) 357 and (right)

1447 Gaussian beams.
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representation, the Gaussian beam approximation allows

one to represent the wave field both near the source and in

the far field. The comparison with the exact linear solution

using a numerical model shows that even close to the

source (small s), where a caustic exists, the approximation

is precise. This agreement between the exact field and the

single-Gaussian beam approximation may be expected as

long as the slowly varying wave train assumption is valid

for the wave forcing field (the orography).

In this work we propose to represent realistic orog-

raphy using a superposition of Gaussian beams. The

Gaussian beams are set so that the power spectrum of the

orography is fitted. As a first approach to set the two

parameters, the width and amplitude of the Gaussian, we

set the amplitude of the Gaussian so that the algorithm

conserves wave energy for each spectral bin and the width

is tuned subjectively to represent the power spectrum of

the orography as closely as possible. To implement the

technique in a wider range of applications, instead of the

few case studies presented here, a least squares problem

could be designed wherein a cost function that measures

the differences between the power spectrum of the orog-

raphy and the Gaussian beam superposition is defined

such that the minimum of the cost function gives the op-

timum Gaussian width.

Since the main goal of this work is to apply the

Gaussian beam approximation to orographic gravity

waves and to compare its potential with standard ray

theory, the simplest gravity wave dispersion relation is

chosen—in particular, hydrostatic and nonrotating ap-

proximations are taken—so that agreement and differ-

ences are more clearly established. A generalization of

the Gaussian beam approximation to include rotation

and nonhydrostatic effects is under way and will be

published in a subsequent work. The only exceptions that

can be envisaged in more realistic dispersion relation-

ships are cases where the second derivatives of the phase

are zero so that higher order terms in the Taylor series of

the phase [see (19)] must be taken into account.

The Gaussian beam technique is computationally very

efficient: it only requires evaluation of functions, that

is, (21), and does not require any extra transformation

except the initial one to determine ĥðk, lÞ. On the other

hand, the numerical simulations performed to obtain

what we call the ‘‘exact solution’’ are extremely de-

manding, particularly in the presence of critical levels. In

the neighborhood of multiple critical levels there is

strong negative interference between modes; indeed,

while the individual modes have a singularity at their

critical levels, the full wave field amplitude goes to zero

there (Shutts 1998). The correct numerical representa-

tion of this strong destructive interference requires a

very high resolution in wavenumber space (e.g., Pulido

2005; Pulido and Rodas 2008). The Gaussian beam

represents well this destructive interference within a ray

tube so that only the evaluation of a few Gaussian

packets is needed to have a realistic wave amplitude

close to multiple critical levels.

If standard ray techniques are used as a gravity wave

parameterization, the appearance of caustics could con-

taminate the gravity wave drag estimation. Since the

wave amplitude grows indefinitely near caustics, the wave

field will be artificially saturated near caustics. Thus, the

parameterization will artificially deposit wave momen-

tum flux in the mean flow. To avoid these inconveniences,

current ray techniques (e.g., Marks and Eckermann 1995;

FIG. 13. Vertical displacements (h/hc) of the wave disturbance in an x–z cross section at 488S: (left) the exact solution and for (middle)

357 and (right) 1447 Gaussian beams.
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Hasha et al. 2008) assume that the cross-sectional area of

ray tubes is constant along the entire ray. The Gaussian

beam approximation gives a wave field that is free of

caustics and, therefore, this approximation is particularly

suitable for future gravity wave parameterizations.
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