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Do transient gravity waves in a shear flow break?

M. Pulido* and C. Rodas
Department of Physics, FACENA, Universidad Nacional del Nordeste, Argentina

ABSTRACT: The propagation of transient gravity waves in a shear flow towards their critical levels is examined using a
ray tracing approximation and a higher-degree (quasi-optic) approximation. Because of its transient forcing, the amplitude
of transient waves decays to zero in the neighbourhood of the critical region so that it is not clear whether transient gravity
waves will reach the convective instability threshold or not. The analysis shows that the horizontal perturbation decays
asymptotically as the inverse of the square root of time, while the vertical wavenumber depends linearly on time, thus
transient gravity waves attain convective instability for long times. The theoretical results are compared with numerical
simulations. The ray path approximation is not able to reproduce the maximum amplitude, but the quasi-optic approximation
gives a reasonable agreement at short and long times. There are three breaking regimes for transient gravity waves. For
wave packets with a narrow frequency spectrum (quasi-steady waves) and large enough initial wave amplitude, the wave
breaking is similar to the abrupt monochromatic wave overturning. On the other hand, highly transient wave packets will
dissipate near the critical region for very long times with small wave amplitudes and high vertical wavenumber. The third
regime is a transition between the two extremes; in this case both wave amplitude and vertical wavenumber are important
to produce the convective threshold. The dependencies of the convective instability height (a quantity that may be useful
for gravity wave parametrizations) on the Richardson number and the frequency spectral width are obtained. Copyright 
2008 Royal Meteorological Society
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1. Introduction

Gravity waves interact continuously with the mean flow
where they propagate. Sometimes the mean flow feeds
energy and momentum into the wave field and sometimes
otherwise. These interactions may be reversible during
conservative propagation and irreversible during gravity
wave dissipation. One of the most effective mechanisms
of dissipation of internal gravity waves in the atmosphere
is their convective overturning (Fritts, 1984). This occurs
when the amplitude of the wave exceeds a threshold so
that the wave-induced potential temperature produces a
local decrease of potential temperature with height and
therefore a convective instability. Above this threshold
the dynamics are expected to be dominated by nonlinear-
ities, the gravity wave starts breaking and its momentum
is deposited in the mean flow.

The irreversible forcing produced by gravity waves
on the mean flow is responsible for changes in the
meridional circulation from the troposphere (Palmer
et al., 1986) to the mesosphere (Holton, 1982). At that
height the gravity wave drag is believed to produce
the meridional circulation that inverts the meridional
temperature gradient. This gravity wave drag is accounted
for by parametrizations in general circulation models.
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A steady-state wave in a horizontal background flow
that depends on height conserves its vertical momentum
flux (Lighthill, 1978). If the wave possess a critical
level, wave energy density diverges and the wave is
strongly attenuated at the critical level, so that there is
no sign of the wave above the critical level assuming a
background flow with large Richardson number (Booker
and Bretherton, 1967). Actually, a dissipative mechanism
via nonlinear processes or viscosity must be activated
before the wave reaches the critical level. Brown and
Stewartson (1980) further extended the Booker and
Bretherton analysis by considering nonlinear processes
inside the critical layer and linear theory outside it; they
found that the reflection coefficient increases with time.

Transient gravity waves do not conserve vertical
momentum flux as they propagate towards the critical
region. The amplitude evolution is governed by the wave
action conservation equation (Bretherton and Garrett,
1968). This fact introduces notable differences; while the
wave energy density of steady-state waves (whose verti-
cal momentum flux is constant below the critical level)
increases indefinitely in the neighbourhood of the crit-
ical level, for transient waves the wave energy density
decreases. This difference is also present in the spectral
evolution; a m−1 power law is satisfied for steady-state
waves since vertical momentum flux is constant with
height (Hines, 1991). In the case of transient gravity
waves, the spectral evolution is governed by a m−3 power
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law which is a consequence of wave action conservation
(Pulido, 2005).

The propagation of a gravity wave packet in a shear
flow was examined by Grimshaw (1975) through numer-
ical simulations. He focused on the nonlinear interactions
between the background flow and the wave packet using
the wave action conservation equation and the horizontal
momentum equation of the background flow. His small
initial amplitude analysis closely resembles the present
study, however there is a key point where they differ:
Grimshaw (1975) assumes that all the components of the
wave packet have a fixed absolute frequency so that the
wave action density does not depend on time. A conse-
quence of this assumption is that the wave packet vertical
width goes to zero as time goes on, so that wave energy
density increases indefinitely in the neighbourhood of the
critical level in the absence of dissipation. In the present
work we examine a wave packet with a frequency dis-
tribution so that the wave action density does depend on
time.

Considering the irreversible feedback processes between
the wave field and the mean flow that take place in the
atmosphere, transient gravity wave momentum deposi-
tion may produce responses in the general circulation
that are not necessarily reproduced by steady-state wave
momentum deposition. The effects of gravity wave pulses
in the equatorial stratosphere were examined by Piani
et al. (2004). They found that the deposited gravity wave
momentum is larger in the vertical width of interest when
a stochastic gravity wave parametrization is used. It was
shown that this parametrization gives a more realistic
quasi-biennial oscillation in multidecadal simulations.

Jones (1967) examined gravity waves propagating
on a shear flow in a rotating frame. There are three
singularities in this case, one of which is the critical
level and the other two levels are located where the
magnitude of the intrinsic frequency equals the Coriolis
frequency. These inertia critical levels depend on the
horizontal wavenumber, so that a disturbance that is
composed of a continuous distribution in the horizontal
wavenumber and a fixed absolute frequency possesses
a different inertia critical level for each component.
This effect was examined by Wurtele et al. (1996) who
found through numerical experiments that the amplitude
of an orographic wave spectrum remains finite and
the evolution of broad horizontal wavenumber spectra
appears to be dominated by linear processes. On the other
hand, nonlinear processes are found for narrow spectra.

Shutts (1998) and Broad (1999) examined a spectrum
of orographic waves propagating in a horizontal back-
ground wind that is rotating with height. In this case
there is also a different critical level for each compo-
nent. They found that the wave energy density does not
increase indefinitely but decays to zero along the ray path.
However, the vertical wavenumber becomes unbounded
at a critical level, so that the existence of the convective
overturning depends on the asymptotic tendencies. Broad

(1999) found that the vertical wavenumber increase dom-
inates the vertical shear so that the convective threshold
is exceeded in the neighbourhood of the critical level.

For a transient gravity wave propagating in a wind
shear, each component (of the frequency spectrum in
this case) possesses its own critical level as indicated by
the cases examined by Shutts (1998), Broad (1999) and
Wurtele et al. (1996). The critical region is the vertical
width over which each component of the wave spectrum
finds its critical level; this vertical width will depend on
the width of the horizontal phase speed spectrum and the
vertical shear of the horizontal background wind. As the
forcing is transient, we expect that wave energy (and so
the wave amplitude) goes to zero at the critical region.
The instability threshold will depend on the value of
the amplitude and the vertical wavelength. Since vertical
wavelength also decreases, the asymptotic behaviour of
amplitude and vertical wavelength for long times will
determine whether the instability threshold is reached.
This is one of the purposes of this work, to determine
whether a transient gravity wave in a shear flow will
attain convective instability when it propagates towards
the critical region.

Another objective of this work is to compare numerical
simulations of the wave amplitude evolution with the
theoretical results obtained using ray tracing and a
higher-degree approximation. Although the asymptotic
behaviour for long times is well captured by the ray
tracing approximation, we find important differences
for shorter times; in particular, we find a characteristic
maximum in the wave amplitude which is not predicted
by the ray tracing approximation. The proposed higher-
degree approximation (known as quasi-optics) shows
good agreement with numerical simulations at short and
long times.

2. Ray tracing

Consider waves which are small perturbations to a basic
state which is characterised by a zonal wind u0(z) and
a constant buoyancy frequency N0. We neglect rotation
and viscosity effects and take the hydrostatic and WKB
approximations. The resulting dispersion relation is

ω = ku0(z) ± N0k

m
, (1)

where ω is the absolute frequency, k is the horizon-
tal wavenumber and m the height-dependent vertical
wavenumber.

We assume a wave packet with a fixed horizon-
tal wavenumber, kf, a frequency distribution localised
around a central frequency ωc and with a spectral width
of �ω. By means of the dispersion relation (1), the
frequency distribution results in a vertical wavenumber
distribution which is centred at m(ωc).

The trajectory of a gravity wave packet is given by

dt x = ∂kω = u0(z) − N0

m
, dt z = ∂mω = N0kf

m2 . (2)
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TRANSIENT GRAVITY WAVES IN A SHEAR FLOW 1085

Since we consider waves that are propagating upward,
we have kept the negative sign in (1).

If at time t = 0 the packet is located at (xi, zi) then
from (2),

x − xi = ω

kf
t, t = N0kf

∫ z

zi

dz′

{ω − kfu0(z
′)}2 . (3)

Equation (3) yields the trajectory (x, z) = (x(ω, t), z(ω, t))

for the wave packet with central frequency ω.
The energy of the wave packet is governed by the wave

action conservation equation (Bretherton and Garrett,
1968),

∂t

(
Wr

�

)
+ ∇ ·

(
cg

Wr

�

)
= 0, (4)

where Wr is the wave energy density, � = ω − ku0 is
the intrinsic frequency and cg = (∂kω, ∂mω) is the group
velocity.

Integrating in height in a vertical interval long enough
to contain the whole disturbance, (4) results in

∂t

∫ ∞

0

Wr

�(z′)
dz′ = 0. (5)

The wave energy density is uniform in the horizontal
coordinate so that Wr is given per horizontal distance
unit.

As we consider a wave packet, it is localised in a
limited region with a vertical width �z; the wave energy
density outside this vertical width is considered negligible
(e.g. Broad, 1999),

〈Wr〉(t)
�

�z = 〈Wr〉(0)

�i

�zi, (6)

where �zi is the vertical width at the initial time, 〈·〉
means an average within the vertical width, and �i is the
intrinsic frequency of the central mode at the initial time.

Using the principle of energy equipartition and con-
sidering quasi-horizontal movements, the wave energy
density is given by (e.g. Pulido, 2005)

Wr = ρ0u
2
1, (7)

where u1 is the horizontal wind perturbation induced by
the wave and the overline means a phase average of the
field.

We focus on the gravity wave breaking process induced
by gravity wave – mean flow interactions so that the
density decrease in height is neglected. Therefore the
background density is considered constant. From (6)
and (7), the evolution of the envelope amplitude a(t) =√

〈u2
1〉 becomes

a(t) = a(0)

√
�(t)�zi

�i�z
. (8)

The evolution of the wave packet vertical width (which
forms the so-called ray tube) is related to the spectral

width through the Jacobian of the transformation between
the physical and spectral space (Broad, 1999):

�z = (∂ωz)ω=ωc
�ω. (9)

The Jacobian is determined using the ray tracing
equation (z = z(ω, t)). The transformation is represented
as a function of absolute frequency so that the spectral
width, �ω, is constant along the ray. On the other hand,
the vertical wavenumber range will not necessarily be
constant, except for a linear background wind where the
vertical wavenumber range is constant in time although
the vertical wavenumber does depend linearly on time.

Furthermore, the initial vertical width �zi may be
expressed in the frequency spectrum, �zi = (∂mω)t=ti

�ti. From Fourier analysis we use the well-known
relationship �ti = �ω−1, so the initial vertical width may
be expressed as

�zi = ω2
c

N0kf�ω
. (10)

Hence, the resulting amplitude evolution yields

a(t) = a(0)

√
�(t)

�i

ω2
c

N0 kf �ω2 (∂ωz)−1. (11)

2.1. Wave amplitude evolution in a linear horizontal
wind

In the general case, the trajectory and amplitude can be
determined through a numerical integration of (3) and (9).
To evaluate the tendencies in a particular case we assume
a linear horizontal background wind, i.e. U(z) = dzUz,
where dzU is constant. In this case calculations can be
carried out analytically.

From (1) and (3), the trajectory yields

z(ω, t) = ω2t

kfN0(1 + Ri−1/2ωt)
, (12)

where the background Richardson number is Ri =
N2

0 /(∂zu0)
2. We assume that at the initial time t = 0 the

wave packet is at the origin (x, z) = (0, 0).
From (12), as t → ∞, the height of the wave packet

with central frequency ωc tends to ωc/(dzUkf) = zc,
where zc is the critical level of the central frequency.

The Jacobian of the transformation for the central
frequency of the packet in the neighbourhood of the
critical region is

∂ωz
∣∣
ωc = ωct

kfN0

2 + Ri−1/2ωct

(1 + Ri−1/2ωct)
2 . (13)

Replacing (13) in (11), the amplitude of the wave
packet is

a(t) = a(0)

√
ωc

�ω2t

1 + Ri−1/2ωct

2 + Ri−1/2ωct
. (14)
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As expected, when t → 0, all the rays converge at the
initial point (0, 0) and therefore the amplitude goes to
infinity.

For long times the amplitude in a wave packet that
is propagating towards the critical region goes to zero;
it diminishes as t−1/2. This behaviour is in contrast
with monochromatic waves whose amplitudes diverge at
the critical level. Modes that compose the wave packet
are interfering destructively in the neighbourhood of the
critical region. However, this does not mean that the wave
will not break; the vertical wavenumber increases as time
goes on so the asymptotic tendency of the vertical shear
of the horizontal perturbation, ∂zu1, is not evident. This
is examined in section 4.

The wave energy density is proportional to the square
of the amplitude (7), so it diminishes as t−1 for long
times. This result reminds us of the steady-state case
examined by Broad (1999), where an orographic wave
propagates in a flow in which the wind direction is turning
with height. For a broad wavenumber spectrum, there are
multiple critical levels where U · k = 0, in which case the
wave energy density also goes to zero. It goes as (z − zc)

at the so-called 3D critical levels. Because it is a steady-
state case, the analysis is done for altitude tendencies
instead of time tendencies.

3. Quasi-optic approximation

The ray tracing approximation assumes that the wave
packet is concentrated in a point at the initial time so
that this approximation can only be used for long times.
In other words, result (14) gives the dominant terms of
the asymptotic expansion for long times. (Note that the
ray path is not strictly the asymptotic term.) However we
expect that the wave packet achieves a maximum ampli-
tude and after that the amplitude starts to decay, a feature
that is not captured by the ray path approximation. A
better approximation is needed to determine whether the
wave packet reaches the convective instability threshold
before the maximum amplitude or before the maximum
vertical wavenumber, namely near the critical level. In
this work we apply the quasi-optic approximation which
keeps information about the initial width of the wave
packet. This approximation is usually found in quantum
mechanics books to explain in classical terms the grow-
ing uncertainty in position as the wave packet spreads.
A general introduction to the quasi-optic approximation
may be found in Ostrovsky and Potapov (1999).

Since the background fields are independent of both
time and horizontal coordinate, the general solution under
the WKB approximation may be written as

u(x, z, t) = 1√
2π

∫
û(ω)

{
m(ω, z)

m(ω, zi)

}1/2

exp(iψ) dω,

(15)

where m(ω, z) is given by (1) and the phase is defined
as

ψ = ωt − kfx +
∫ z

zi

m(ω, z′) dz′. (16)

As in the ray tracing approximation, the horizontal
wavenumber is fixed to be kf.

The solution (15) is expressed as a Fourier integral
in absolute frequency because this parameter is constant
along the propagation and therefore the frequency spec-
trum, û(ω), does not evolve with time. (This is a key
point in the proof; any attempt to work with the verti-
cal wavenumber would be fruitless because of refraction
(Pulido, 2005).)

We assume a Gaussian frequency spectrum with central
frequency ωc and spectral width σω,

û(ω) = ûω

σω

exp

{
− (ω − ωc)

2

2σ 2
ω

}
. (17)

The phase ψ is expanded in Taylor series up to second
order in ω around the central frequency and the amplitude
term is expanded only up to first order in (15). This is
done assuming a large Richardson number, an assumption
consistent with the WKB approximation. This assumption
implies that the amplitude term changes are slower than
the oscillatory term changes, so that it is only necessary
to retain the first order in the amplitude expansion. The
resulting integral is

u = ûω√
2πσω

(
mc

mic

)1/2

exp (iψc)

×
∫ ∞

−∞
exp

{
− (ω − ωc)

2

2σ 2
ω

}

× exp
[

i
{
∂ωψc(ω − ωc) + 1

2
∂2
ωωψc(ω − ωc)

2
}]

dω.

(18)

The subscript c means evaluation at ω = ωc.
Expression (18) is then integrated by completing

squares in the exponents. The result is

u = ûω

σω

(
mc

mic

)1/2 exp{i(ψc − θ/2)}
{1/σ 4

ω + (∂2
ωωψc)

2}1/4

× exp

{
− (∂ωψc)

2

2(σ−2
ω − i∂2

ωωψc)

}
, (19)

where θ = tan−1(−∂2
ωωψcσ

2
ω). The exponential with

imaginary argument represents the phase of the principal
component, and the real exponential is the modulation of
the amplitude that propagates with the group velocity

∂ωψc = 0. (20)

Equation (20) defines the path of the central mode.
The limit case for 1/σω → 0 resembles the phase of

the stationary phase method: θ/2 = π/4 or 3π/4. These
are related to the slopes of the steepest descent path in
the integration near a stationary point (Lighthill, 1978).
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The amplitude of the envelope is

a(t) = ûω

(
mc

mic

)1/2 {
1 + σ 4

ω(∂2
ωωψc)

2}−1/4
. (21)

Here the amplitude evolution is not only given by the
vertical wavenumber square root dependencies but also
by the second derivative of the phase which represents
the dispersion of the wave packet. Wave energy density
diminishes because ray paths with different absolute
frequencies separate. Contrary to ray tracing, in this
approximation the amplitude of the Gaussian packet
always remains finite even at the initial time where
∂2
ωωψc(t = 0) = 0 and then a(t = 0) = ûω.

For the limit σω → 0, the monochromatic amplitude is
recovered from (21)

aσω→0 = ûω

(
mc

mic

)1/2

, (22)

and therefore aσω→0 is unbounded in the neighbourhood
of the critical level because mc → ∞ at that level. On
the other hand, the broader the frequency spectrum, the
smaller the amplitude, from (21), because of dispersion.

The solution given by the quasi-optic approximation
(19) not only gives the evolution of wave amplitude but
also determines the evolution of the wave packet temporal
range; using �z = ∂mω�t , the vertical width is

�z = �zi

(
mic

mc

)2 {
1 + σ 4

ω (∂2
ωωψc)

2}1/2
. (23)

3.l. Wave amplitude evolution in a linear horizontal
wind

The propagation of a Gaussian wave packet in a linear
background wind (the same conditions as section 2
2.1) is an example where the evolution of the wave
packet can be examined analytically under the quasi-optic
approximation.

The first derivative of the phase, (16), is given by

∂ωψc = t − N0kfz

(1 − z/zc)ω
2
c

. (24)

From the stationary phase condition, ∂ωψc = 0, the ray
equation (12) results. Using (24) and (12), the dispersion
of the waves with different frequencies for a linear
background wind yields

∂2
ωωψc = t

ωc
(2 + Ri−1/2ωct). (25)

Therefore the vertical width of the wave packet
increases as the wave packet propagates towards the crit-
ical region.

The vertical wavenumber from (1) and (12) is expected
to grow in the form(

mc

mic

)
= (1 + Ri−1/2ωct). (26)

Finally, replacing (25) and (26) in (21) results in

a = ûω

σω

(1 + Ri−1/2ωct)
1/2{

1/σ 4
ω + (t/ωc)

2(2 + Ri−1/2ωct)
2}1/4 . (27)

A comparison between the amplitude evolution given
by the quasi-optic approximation, (27), with the ampli-
tude evolution given by ray path approximation is shown
in Figure 3 (continuous and dashed curves respectively).
The quasi-optic approximation can capture the finite ini-
tial amplitude, then the amplitude presents a maximum
and finally the asymptotic behaviour is achieved. In con-
trast, the amplitude under the ray path approximation is
unbounded at the initial time and then diminishes mono-
tonically.

The asymptotic term of (27) for long times is

at→∞ = ûω

σω

(ωc

t

)1/2
. (28)

Figure 1. Breaking height z̃b as a function of β for different initial amplitudes for fixed ũ (= 0.05, . . . , 0.95 at intervals of 0.15) and height of
the maximum wave amplitude (dashed curve). See section 4.1 for a definition of the parameters.

Copyright  2008 Royal Meteorological Society Q. J. R. Meteorol. Soc. 134: 1083–1094 (2008)
DOI: 10.1002/qj



1088 M. PULIDO AND C. RODAS

The asymptotic behaviour given by (28) is equivalent
to the one obtained with the ray tracing approximation
(Figure 3). Moreover, the equivalence of the quasi-optic
and ray tracing approximations in the wave amplitude
includes superior terms in the asymptotic series; the only
difference between the two exact expressions (14) and
(27) is that the initial time range σ−1

ω is taken to be zero
in the ray tracing.

The initial time range term at (27) is essential to
represent the amplitude evolution at short times. In
particular, the amplitude maximum in (27) (∂ta(tM) = 0)
is found at

tM =
(

Ri

σ 4
ω

+ Ri2

ω4
c

)1/4

− Ri1/2

ωc
. (29)

The height where the wave packet achieves the maxi-
mum wave amplitude is obtained from (29) and (12),

zM = zc

1 −
(

Ri σ 4
ω

Ri σ 4
ω + ω4

c

)1/4
 (30)

The quasi-optic approximation is able to reproduce
both the time and the amplitude of the actual maximum
very well as shown in the numerical simulations (sec-
tion 6). The maxima are found at longer times and higher
altitudes for narrower frequency spectra.

The presence of this wave amplitude maximum is
also essential to obtain an asymptotic agreement between
transient gravity waves in the limit for steady-state
waves σω → 0 and the well-known monochromatic case.
Monochromatic waves have the maximum wave ampli-
tude at the critical level where it is unbounded.

The differences between the quasi-optic and ray path
approximations are also present in the vertical width
evolution (Figure 4). The evolution of the wave packet
vertical width in the ray path approximation, (9), is zero
at the initial time and then grows monotonically. (All the
rays start at the same point at the initial time.) On the
other hand the wave packet vertical width in the quasi-
optic approximation from (23) results in

�z = �zi

[
1 + {

σ 2
ωt/ωc(2 + Ri−1/2ωct)

}2
]1/2

(1 + Ri−1/2ωct)
2 . (31)

The wave packet vertical width is �zi at the initial
time and then it diminishes until a minimum is achieved
at

tm =


(
Ri

ω2
c

+ ω2
c

σ 4
ω

)1/2

− Ri1/4

ωc

 . (32)

Interestingly, the time at which the wave packet
vertical width minimum (32) is obtained is found at
earlier times than the time at which the wave amplitude
maximum (29) is achieved. For long times the vertical
width under both ray path and quasi-optic approximations
tend asymptotically towards a constant.

4. Convective instability analysis

The convective instability threshold is attained when
the buoyancy frequency N2 = (g/θ)∂zθ (where θ is the
potential temperature) becomes zero, i.e.

N2 = N2
0 − N0

∣∣∂zu1

∣∣ = 0, (33)

where only the first order is kept and we have used
the polarization relation, N2

1 = (g/θ0)∂zθ1 = iN0∂zu1. As
expected, the instability depends only on the phase-
averaged vertical shear of the horizontal wind perturba-
tion.

Assuming a slowly varying amplitude (Lighthill,
1978), the instability condition (33) is reduced to

1 − |mc|a
N0

= 0. (34)

Equation (34) shows that the threshold depends on the
wave amplitude and the vertical wavenumber of the wave
packet. This condition determines the minimum time at
which the threshold is reached.

Since wave amplitude decreases and vertical wavenum-
ber increases for long times, the asymptotic behaviour
determines if the convective threshold is reached. The
asymptotic value of the vertical wavenumber from (26)
is

mc, t→∞ = micRi−1/2ωct. (35)

Taking the asymptotic value of wave amplitude (28)
and vertical wavenumber (35), the buoyancy frequency
squared for long times is

N2 = N2
0

{
1 − kfRi−1/2 ûω

σω

(ωct)
1/2

}
. (36)

As vertical wavenumber increases linearly with time
while the wave amplitude decreases as the square root
of time, then the phase averaged vertical shear of the
horizontal perturbation increases with time near the
critical region. Therefore the wave packet will reach
the convective threshold. The nature of this convective
instability is essentially different from the picture of a
quasi-monochromatic wave, where very large amplitudes
(wave energy densities) are reached. On the contrary the
convective instability given by (36) in a highly transient
wave is reached at long times with small amplitudes and
high vertical wavenumbers.

Under the quasi-optic approximation, (27) shows that
the wave packet reaches a wave amplitude maximum
before attaining the asymptotic behaviour. Therefore
depending on the parameters of the wave packet, the
flow will become convectively unstable either before
the wave amplitude maximum or before the vertical
wavenumber maximum. Furthermore, we expect that the
physical mechanisms involved in these two cases may be
different.

The maximum wave amplitude found with quasi-optic
approximation occurs at longer times for smaller σω.
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Indeed at the limit of monochromatic waves, σω → 0,
the wave amplitude maximum is located at the critical
level so that the quasi-optic approximation shows a
completely agreement with monochromatic waves when
σω → 0 as already mentioned. Therefore we expect that
the characteristics of the convective instability produced
by a wave packet near the maximum wave amplitude
are similar to the convective instability produced by
a monochromatic wave. This feature will be further
analysed through numerical simulations in section 6.

4.1. Convective instability in a linear horizontal wind
under the quasi-optic approximation

An expression for the adimensionalised breaking altitude
z̃b = zb/zc may be obtained using the convective insta-
bility condition, (34), with the wave amplitude given by
(27) (which is expressed as a function of z through (26)),

β4 = ũ4 − (1 − z̃b)
6

(1 − z̃b)
2 (̃z2

b − 2 z̃b)
2 , (37)

where ũ = ûω(ωc/kf)
−1 is the wave amplitude adimen-

sionalised by the phase speed of the central mode and
β = Ri1/4σωω−1

c is the adimensionalised spectral width
(weighted by Ri 1/4).

In the case of a monochromatic wave, β = 0, the
breaking height is given by

z̃b β→0 = 1 − ũ2/3, (38)

the depth of the critical layer is 1 − z̃b β→0 = ũ2/3 so
that the classical monochromatic result is recovered in
this limit. Besides, using (12) and (38) we recover the
time limit of linear theory (e.g. Brown and Stewartson,
1980):

ωc t < Ri1/2 (ũ−2/3 − 1), (39)

At the other extreme, for a highly transient wave
(β → ∞) the wave amplitude goes as

z̃b β→∞ = 1 − ũ2

β2 . (40)

The breaking height in this limit is the critical level
of the central mode. In other words, the highly transient
wave will break very close to the critical level of the
central mode where the vertical wavenumber is large and
the wave amplitude is very small. The nonlinear terms
become significant for times longer than

ωc t = Ri1/2 (β2ũ−2 − 1). (41)

In this case, the time limit depends on the spectral width;
it is very large for broad spectra.

The breaking height as a function of the transient
parameter, β, is shown in Figure 1 for a fixed ũ. As β

grows, we find three breaking regimes:

I For small β, transient waves break before they
reach the maximum amplitude. In this case the
breaking amplitude is practically the one given by
the monochromatic case (38).

II For β in the medium range, transient waves break
just after they reach the maximum amplitude. The
breaking altitude is higher than that given by the
monochromatic case.

III For large β, transient waves break near the critical
level of the central mode. This regime represents the
highly transient and low initial amplitude cases. This
is the only one found in the ray path approximation.

For ũ > 2−1/4, regimes II and III are not present
because the curves for a fixed β value contain three solu-
tions. In these cases, the smallest z̃b must be interpreted
as the breaking height.

The physical processes involved in the dissipation of
these so-called breaking regimes are probably different.
If the convective instability threshold is reached before
the maximum amplitude height, i.e. for waves in the
regime I, we expect an abrupt wave breakdown and the
subsequent turbulence generation. For waves in regime
III, the time to reach the convective instability is longer
than for waves in regime I, the wave amplitude at the
threshold is very small and the vertical shear induced by
the wave is very large so that diffusive processes may

Figure 2. (a) Profile of the horizontal velocity perturbation obtained with the numerical model for a wave packet at t = 0 (dashed line) and
t = 12 h (solid curve) with ωc = 0.10N0 and σω = 0.15ωc propagating in a background flow defined by Ri = 100. (b) Wave energy density at

t = 0 (long dashed), 4 h (dashed), 12 h (continuous) and 24 h (dotted).
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play a more important role in this case. Waves in regime
II are in the transition region so that both turbulence
generation and diffusive processes may be important to
represent their dissipation.

Two extreme wave breaking regimes have already
been found by Winters and D’Assaro (1989) in nonlinear
numerical simulations of transient wave packets propa-
gating in a shear flow. They found two gravity wave
packet evolutions depending on the initial wave ampli-
tude. In a large-amplitude case-study, there is an abrupt
breakdown. In the small-amplitude case, the packet is
completely absorbed by the mean flow without breaking
during its whole life cycle. Lin et al. (1993) also find
that small-amplitude wave packets do not break; regret-
tably small amplitude cases are not shown in that work.
Even though Wurtele et al. (1996) examined a different
configuration (inertia critical levels for orographic waves
with a horizontal wavenumber spectrum), they also found
two wave regimes which depend on the width of the
horizontal wavenumber spectrum, in agreement with the
results found in the present case for the frequency spec-
trum. In the context of Figure 1, the two cases examined
by Winters and D’Assaro (1989) are two ũ values for a
fixed β; on the other hand the two cases presented by
Wurtele et al. (1996) may be thought as two β values for
a fixed ũ.

5. Numerical model

In order to evaluate the theoretical results and to find
the range of validity of the different approximations, two
sets of numerical simulations were performed with just
representative values of the background flow and gravity
wave packet characteristics. This numerical study does
not pretend to be an exhaustive simulation of realistic
situations but an idealised numerical case to be compared
with the theoretical results.

The simulations were performed using the numerical
model described in detail in Pulido (2005). The model
reproduces the evolution of an arbitrary disturbance in a
shear wind by solving numerically the Taylor – Goldstein
equation in the spectral space followed by a transforma-
tion to the physical space.

For each mode in the spectral space, the numerical
model solves the Taylor – Goldstein equation and obtains
the component of the horizontal velocity (u(ω, z)) as
a function of height. The Taylor – Goldstein equation
is represented by two first-order differential equations
which are solved using the fourth-order Runge – Kutta
scheme with adaptive stepsize (Press et al. 1992). Once
all the spectral components are obtained, they are Fourier
transformed to the physical space to obtain u(z, t).
As in the theoretical development, we assume that the
disturbance is periodic in x.

At z = 0, the wave packet modes conform to a
Gaussian spectrum so that

u(ω, z = 0) = ûω

σω

exp

{
−(ω − ωc)

2

2σ 2
ω

}
, (42)

where ωc is the central frequency and σω is the frequency
spectral width.

The background is given by a constant buoyancy
frequency N0 and a horizontal wind

u0(z) = N0

Ri1/2 z, (43)

where Ri is the background Richardson number. In all
cases we take N0 = 0.02 s−1 as a representative value.

The numerical experiments were performed from
a lower boundary at z = 0 to the upper boundary
at z = 3 Ri1/2ωc(N0 kf)

−1. The radiation condition is
imposed in order to keep only upward propagating waves.
When the envelope of the wave packet is examined at the
initial time, the lower boundary is located at z = −3�zi.
The vertical resolution was set at 2 m and the frequency
resolution at 10−4σω.

6. Numerical simulations

Figure 2(a) shows the wave profile at the initial time
and at t = 12 h. At the initial time, the wave packet
is quite extended in altitude; because of this the ver-
tical wavenumber and wave amplitude changes due to
background wind changes are evident inside the wave

Figure 3. Evolution of the wave amplitude for (a) a wave packet with σω = 0.1ωc and different background flows Ri = 25 (◊), Ri = 100 (�)
and Ri = 400 (�), (b) a background flow given by Ri = 100 and for different spectral widths σω = 0.05ωc (◊), 0.10ωc (�) and 0.15ωc (�).

The quasi-optic approximation (27) is represented by solid curves and ray path approximation (14) by dashed curves.
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envelope. As time goes on, the wave envelope is more
compact and the vertical wavenumber increases so that
the wave packet is more symmetric and the modulated
wave hypothesis (i.e. the envelope width must be com-
posed of many wavelengths) is more clearly satisfied as
the transient wave propagates towards the critical region.

The evolution of the wave energy density shows that
the wave packet tends towards a Gaussian shape in
altitude (Figure 2(b)) so that the wave packet vertical
width and the maximum wave amplitude are clearly
defined for long times. The wave packet width evolution
focuses at short times and then it remains rather constant,
although wave amplitude continues to diminish because
the intrinsic frequency diminishes monotonically with
time (6).

Numerical experiments with different Richardson num-
bers were performed; the evolution of the wave amplitude
is shown in Figure 3(a). We found out that the smaller
Richardson number, the larger wave amplitude maxi-
mum. This effect is well reproduced by the quasi-optic
approximation. Furthermore the wave amplitude does not
depend on Richardson number at long times as both
quasi-optic and ray path approximations predict.

There are two subtle differences between the numerical
experiments and the quasi-optic approximation. The case
for small Richardson number (represented by diamonds
in Figure 3(a)) presents differences at t = 0. These dif-
ferences may be traced back to the wave energy density
profile at t = 0 shown in Figure 2(b). This profile con-
tains the maximum amplitude at a higher altitude than
z = 0; this effect is due to the (m/mi)

1/2 factor in each
component of the solution. Although the level of perfect
constructive interference is at z = 0, the (m/mi)

1/2 fac-
tor produces a larger wave amplitude at higher altitudes.
As already mentioned, these effects are most evident for
short times (because the wave packet is rather extended in
height) and also for small Richardson numbers (because
the (m/mi)

1/2 changes with height are larger).
The other difference between the analytical prediction

(27) and the numerical experiments is a small oscillation
that appears in the numerical simulations for long times,
particularly for large Richardson number. A set of

numerical experiments with different vertical resolutions
shows that the amplitude of the oscillation is reduced for
higher vertical resolution (not shown).

A second set of numerical experiments was designed
to examine the dependencies of the wave packet spectral
width (σω) in order to evaluate the tendencies found in the
theoretical development. The asymptotic long-time decay
of the amplitude depends on the wave packet width: the
broader the spectral width, the smaller the wave ampli-
tude (Figure 3(b)). Furthermore, the maximum amplitude
shifts towards longer times for narrower spectral width.
This behaviour is also well captured by the quasi-optic
approximation.

The evolution of the wave packet vertical width for the
experiments with different Ri is shown in Figure 4(a).
The vertical width in the numerical experiments is
defined to be half of the height difference between the
levels where the wave energy density decays to e−1 of
the maximum amplitude. The wave packet narrows at
short times, then the wave packet width grows until
it reaches an asymptotic constant value at long times.
The correspondence between the theoretical predictions
from the quasi-optic approximation and the numerical
experiments is remarkable at both short and long times.
On the other hand, the ray path approximation reproduces
the width evolution for long times, but for short times the
ray path width goes to zero.

The asymptotic vertical width is longer for larger
Richardson number. This effect is directly related to the
spectral distribution of the modes contained in the wave
packet. Since each component of the wave packet must
reach its own critical level, we expect that the vertical
width for long times must be related to the altitude range
formed by the critical levels of the different components
of the wave packet. For a linear background wind, the
critical level for a mode with frequency ω is defined as
zcω = ω(k∂zu0)

−1 so that the asymptotic vertical width
for long times is

�z(t → ∞) = σω

kf∂zu0
= Ri1/2σω

N0kf
. (44)

Figure 4. Evolution of the vertical width for (a) wave packets with an initial spectral width of σω = 0.2ωc and different Ri , and (b) wave packets
propagating in a background with Ri = 100 and different σω . The range given by (44) is represented by dashed curves. Other conventions are

as in Figure 3.
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The so-called critical region may be identified as
this height range. This inferred asymptotic wave packet
vertical width, (44), agrees for long times with the
one obtained analytically in (31) and the numerical
experiments (Figure 4(a)).

As expected from (44), the asymptotic vertical width
of the wave packet depends linearly on the spectral
width σω. Figure 2(b) shows the vertical width evolution
corroborating the linear dependence of the asymptotes.
There are some differences between the quasi-optic
approximation and the numerical simulations at short
times for the small σω case; these differences are again
related to the extended asymmetric envelope found at the
initial time (Figure 3(b)). Note that extended envelopes
are very sensitive to the decay rate criterion (the e−1

factor) used to define the wave packet range in the
numerical simulations.

Our results show that both the wave packet range and
the wave action density (from (5)) tend to a constant
value for long times. These features are different from the
asymptotic tendencies obtained by Grimshaw (1975). The
small-amplitude inviscid case examined by Grimshaw
presents a wave packet vertical width that goes to zero
for long times and thus a wave action density that grows
indefinitely as the wave packet propagates towards the
critical level. As already mentioned, we take into account
the spectral distribution of the wave packet in frequency;
each mode possesses a different critical level (instead
of only one), forming the so-called critical region. This
is the key difference between Grimshaw (1975) and the
present study.

The evolution of the buoyancy frequency for the two
sets of experiments, for different Richardson numbers
and for different spectral widths, are shown in Figure 5.
Again the quasi-optic approximation shows good agree-
ment with the numerical results, with the exception of the
two problems already found for both the amplitude and
width evolution. The cases for small Richardson num-
ber (Figure 5(a)) and small spectral width (Figure 5(b))
present negative values for long times; these features are
shown for completeness of the curves, since nonlinear
processes are thought to be activated near the convec-
tive instability threshold. The cases for large Richardson

number and broad frequency spectrum do not reach the
convective instability threshold even for the very long
times considered in Figure 5. Lin et al. (1993) through
nonlinear numerical experiments found that the larger
the Richardson number, the longer is the time taken to
reach the convective instability threshold in agreement
with the present linear results. Although wave packets
in large Richardson numbers will undoubtedly reach the
threshold, we do not expect the linear inviscid approach
is valid for such long times. A diffusive process must be
acting which may dissipate the transient wave before it
reaches the convective instability threshold (Winters and
D’Assaro, 1989).

7. Conclusions

Two techniques are applied to examine a transient
gravity wave that is propagating towards the critical
region. The application of a ray tracing technique is
a complement to applications that focus on orographic
waves (Broad, 1999). In this work, instead of fixing
the absolute frequency, we work under the wave packet
assumptions in the frequency spectrum, that is, the central
absolute frequency and frequency width are considered
parameters. Ray tracing does not reproduce the behaviour
found in the wave amplitude for short times. The quasi-
optic approximation has a remarkably good performance
for short times and long times.

Using the quasi-optic approximation we find three
‘breaking’ regimes for gravity wave packets that are
propagating towards their critical regions. Quasi-steady
wave packets with large initial amplitudes attain the
convective threshold at some level below the height of
maximum wave amplitude (30). This breaking regime
is similar to the monochromatic wave case. On the
other hand, if the initial wave amplitude is not large
enough and the wave packet is highly transient, it will
not reach the convective threshold before the maximum
wave amplitude is achieved. In this case the convective
threshold is achieved for much longer times near the
critical region, the amplitude of the wave packet is small
and the vertical wavenumber is large at the breaking

Figure 5. Evolution of the buoyancy frequency (33) for (a) different Richardson numbers and (b) different spectral widths. Conventions are as
in Figure 3.
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Figure 6. (a) Wave amplitude ã = a(ωc/kf)
−1 as a function of altitude for ũω = 0.2, Ri = 100. The spectral width is σω = 0.30ωc (dashed

curve), σω = 0.15ωc (dotted curve) and the monochromatic case σω → 0 (solid curve). (b) Vertical wavenumber as a function of altitude. The
letters A, B and C in the curves represent the height of breaking for σω → 0, σω = 0.15ωc and σω = 0.30ωc , respectively.

height. The third regime is a transition regime where
both amplitude and vertical wavenumber are important
to produce the dissipation of the wave.

To illustrate this result, Figure 6(a) shows the wave
amplitude as a function of height for two transient waves
and for the monochromatic case. For waves with a
narrow spectral distribution in frequency, the breaking
height is close to the monochromatic breaking height; the
amplitude is also similar although slightly smaller than
the monochromatic case. The most transient case does
not reach convective instability as the wave amplitude
grows so that the threshold is reached near the critical
level of the central mode. The ‘breaking’ amplitude
is much smaller in this case. Furthermore, the vertical
wavenumber for the transient case is much larger than
for the monochromatic case (Figure 6(b)). This fact
also suggests that we must take into account diffusive
processes and viscosity in order to represent correctly
the dissipation of highly transient waves.

The processes involved in the gravity wave – critical
level interactions are fully nonlinear (e.g. Fritts, 1984).
The nonlinear terms in the equations become important
in the so-defined critical layer for a sufficiently long
time while they are negligible outside it (Brown and
Stewartson, 1980). As ray path and quasi-optic techniques
are based on linear wave theory, they can only be used
outside the critical layer. The complex physical processes
involved in wave breaking inside the critical layer are
beyond the scope of these linear techniques. Indeed our
long-time predictions of wave evolution are shown only
for illustrative purposes; wave amplitudes for long times
are likely to be affected by both nonlinear and diffusive
processes.

One may also wonder to what extend the breaking
height estimated under linear wave theory may be real-
istic. There are a number of numerical nonlinear studies
that evaluate the scope of linear wave theory with encour-
aging results. Dörnbrack and Nappo (1997) found good
agreement between the linear breaking height and the
breaking height found in numerical simulations. (The
configuration was taken to reproduce the results of a
laboratory experiment of gravity wave breaking.) The

nonlinear numerical simulations performed by Winters
and D’Assaro (1989) suggest that the entire life cycle of
small-amplitude wave packets is governed by linear wave
theory. Prusa et al. (1996) for a constant background flow
also found that the actual breaking height was predicted
precisely by linear wave theory, moreover the vertical
and horizontal extension predicted by linear theory were
also in good agreement with the numerical simulation.

Actual gravity wave parametrizations usually apply
only one criterion of breaking independently of the
wave characteristics, with the exception of Warner and
McIntyre (1996) who apply an empirical criterion in the
spectral space. This work, in agreement with the Winters
and D’Assaro results, suggests that a more realistic
gravity wave parametrization should consider the wave
characteristics (particularly a measure of the transiency
of the disturbances, say σω, and the spectral amplitude)
in order to discern whether transient waves dissipate by
overturning or by diffusive processes.
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