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ABSTRACT

This work explores the potential of online parameter estimation as a technique for model error treatment

under an imperfect model scenario, in an ensemble-based data assimilation system, using a simple atmospheric

general circulation model, and an observing system simulation experiment (OSSE) approach. Model error is

introduced in the imperfect model scenario by changing the value of the parameters associated with different

schemes. The parameters of the moist convection scheme are the only ones to be estimated in the data as-

similation system. In this work, parameter estimation is compared and combined with techniques that account

for the lack of ensemble spread and for the systematic model error. The OSSEs show that when parameter

estimation is combined with model error treatment techniques, multiplicative and additive inflation or a bias

correction technique, parameter estimation produces a further improvement of analysis quality and medium-

range forecast skill with respect to the OSSEs with model error treatment techniques without parameter esti-

mation. The improvement produced by parameter estimation ismainly a consequence of the optimization of the

parameter values. The estimated parameters do not converge to the value used to generate the observations in

the imperfect model scenario; however, the analysis error is reduced and the forecast skill is improved.

1. Introduction

Parameter estimation using data assimilation is an

objective and efficient methodology that might be used

to optimize uncertain parameters in numerical models.

In this methodology, model parameters are treated as

state variables (Jazwinski 1970) so they can be opti-

mized based on the available observations. Several re-

cent works discuss parameter estimation using data

assimilation techniques (Annan et al. 2005; Aksoy et al.

2006a; Pulido and Thuburn 2006; Kondrashov et al. 2008;

Jung et al. 2010; Kang et al. 2011; Bellsky et al. 2014;

Zhang et al. 2012; Wu et al. 2012; Ruiz et al. 2013a)

among many others. Aksoy (2015) presented a review

about the estimation of model parameters using data

assimilation techniques while Ruiz et al. (2013a) pre-

sented a review of parameter estimation using ensemble-

based data assimilation techniques as well as some results

of its implementation with a simple atmospheric general

circulation model.

Most experiments on parameter estimation have been

performed under the perfect model assumption (e.g.,

Aksoy et al. 2006a,b; Koyama and Watanabe 2010; Kang

et al. 2011; Ruiz et al. 2013a,b). In these so-called twin ex-

periments, synthetic observations are generated with the

model using a certain set of parameters, say true parame-

ters. Then, an almost perfect version of the model, which

only differs from the perfect model in the values of the

parameters to be estimated is used to simulate a data as-

similation cycle. In this idealized situation, the estimated

model parameters usually converge to their true values and

model error is almost eliminated.This produces a significant

improvement in the analysis and also in the short, medium-

range, and long-term forecasts (Koyama and Watanabe

2010; Schirber et al. 2013;Wu et al. 2012; Ruiz et al. 2013a).
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Atmospheric general circulation models contain

many sources of model error in realistic applications

(e.g., truncation errors and simplifications made in pa-

rameterizations; Zhang et al. 2012). These sources of

errors cannot be completely eliminated by tuning some

model parameters. In parameter estimations for realistic

applications, there are no true values for the model pa-

rameters, only optimal values for the parameters can be

defined that are the ones that maximize the short-range

forecast skill or that produce the best representation of

the climatology under a certain metric (Annan 2005).

The selection of the metric is particularly important

since the optimal values for the parameters may depend

on this metric. Schirber et al. (2013) performed experi-

ments using an atmospheric general circulationmodel in

which the convective scheme parameters are estimated

using an ensemble-based data assimilation technique.

They conducted perfect model experiments as well as

imperfect model experiments and show that the esti-

mated parameters in the imperfect model experiment

are different from the ones obtained in the perfect

model experiments. Systematic errors in the observa-

tions or in the observation operator may also affect the

estimated parameter values. Jung et al. (2010) show,

using an observing system simulation experiment and

a mesoscale model, that when the observation operator

is imperfect the estimated parameters do not converge

to their nature values; however, the optimization of

somemodel parameters produces an improvement upon

the analysis and the forecast. The success of the opti-

mization depends upon the observations used.

Ensemble-based data assimilation systems are par-

ticularly sensitive to model imperfection (Miyoshi 2005;

Li et al. 2009;Whitaker et al. 2008). This may be because

ensemblemethods restrict the corrections introduced by

the observations to the subspace spanned by the en-

semble members. When the ensemble is not explicitly

designed to account for the presence of model errors,

the structure of the ensemble forecast perturbations

may significantly differ from the structure of model er-

rors and, thus, observations are not able to properly

correct them. There are several techniques for consid-

ering the effect of model error in data assimilation and

in particular for ensemble methods. These techniques

might be classified in two categories: The first category is

the techniques that deal with the underestimation of the

background error covariance due to model error and

limited ensemble size. This is particularly the case in

weather forecast models whose model state has 108 or

more dimensions while a few tens or a few hundred en-

semble state members can be afforded in the data as-

similation system. The model error techniques that fall

into this category, such as additive inflation (Houtekamer

et al. 2009; Li et al. 2009), adaptivemultiplicative inflation

(Miyoshi 2011; Anderson 2009), multimodel ensembles

(Meng and Zhang 2007), stochastic kinetic energy

backscatter (Shutts 2005), stochastically perturbed

parameterization tendencies (Buizza et al. 1999), and

parameter perturbations (Jung et al. 2010; Stainforth

et al. 2005) attempt to consider the missing sources of

uncertainty in the estimation of the background error

covariance. They do not attempt to alleviate the model

error. The second category is those techniques that

estimate the systematic model error and partially cor-

rect it (i.e., bias correction methods) (Dee and da Silva

1998; Baek et al. 2006; Danforth et al. 2007). Within

the framework of ensemble-based data assimilation,

parameter estimation may be used for model error

treatment. Online parameter estimation belongs to both

categories because it may alleviate systematic model

errors by optimizing incorrect parameter values. But

also, it can contribute to enhance the model ensemble

spread because in order to estimate covariances between

the parameters and the observations each ensemble

member uses a different set of model parameters (Aksoy

2015).

The combination of parameter estimation with other

methods that take into account model error in a data

assimilation system has not been explored yet. In this

work, we evaluate online parameter estimation as

a model error treatment technique combined with other

state-of-the-art techniques for dealing with model error.

In particular, we examine whether parameter estimation

can provide a further improvement in the analysis be-

yond the improvement produced by the other tech-

niques for model error treatment. The fact that, online

parameter estimation may contribute to both ensemble

spread enhancement and to correct systematic model

error, makes it particularly suitable for these combined

experiments. The techniques are evaluated using a sim-

ple atmospheric general circulation model in experi-

ments with observations taken from model integrations.

To produce the synthetic observations, the model in-

tegration uses a large set of parameters that are changed

with respect to the model used in the data assimilation

system, including parameters related to the schemes of

vertical diffusion, large-scale condensation, deep moist

convection, and surface exchange of heat and momen-

tum from land and sea. The parameters of the moist

convection scheme are the only ones to be estimated in

the data assimilation cycle. In this way, the model has

errors in reproducing several physical processes that

cannot be directly corrected, by parameter optimization,

in the data assimilation cycle except for moist convection.

The data assimilation experiments evaluate the impact of

parameter estimation and its combination with other
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model error techniques upon the analysis and medium-

range forecasts.

This paper is organized as follows: section 2 describes

the methodology and data used in this work, section 3

shows the results, and in section 4we draw the conclusions.

2. Methodology

a. Model

In this work, a simplified and computationally efficient

atmospheric general circulation model known as the

Simplified Parameterizations, Primitive Equation Dy-

namics (SPEEDY) model is used (Molteni 2003). This

model has a T42 spectral representation of the atmo-

spheric fields and seven vertical sigma levels. The model

includes some simple parameterizations of convection,

radiation, large-scale condensation, planetary boundary

layer, and surface processes. There is also a simple but

realistic representation of the land–sea distribution. This

model is extensively used for idealized data assimilation

experiments given its computational efficiency (Miyoshi

2005; Fertig et al. 2007; Kang et al. 2011).

b. Data assimilation algorithm

The ensemble-based data assimilation algorithm

implemented in this work is similar to the one described

in Miyoshi and Yamane (2007). This data assimilation

algorithm is based on the local ensemble transform

Kalman filter (LETKF) introduced by Hunt et al.

(2007). In the LETKF, the Kalman filter equations are

solved in the subspace spanned by the forecast ensemble

perturbations, which makes the computation more ef-

ficient and easier to parallelize.

A commonpractice in ensembleKalman filtermethods

is to apply some kind of localization to reduce the impact

of sampling error in the estimation of error covariances

from a limited size ensemble, thus increasing the rank of

the estimated background error covariance matrix

(Hamill et al. 2001). In the current implementation, lo-

calization is achieved applying an observation error co-

variance localization approach (Greybush et al. 2011;

Miyoshi et al. 2007).

An ensemble of 50 members is used in all the exper-

iments discussed in this work. The ensemble state

members are initialized taking random samples from the

SPEEDY model climatology so no information about

the current state of the system is included at the begin-

ning of the assimilation cycle.

c. Model error treatment

In this section a brief description of the different

model error techniques used in this paper is provided.

1) MULTIPLICATIVE INFLATION

Multiplicative inflation consists on multiplying the en-

semble perturbations by an inflation parameter (Anderson

2001), which can be time and space dependent (Anderson

2009; Miyoshi 2011). Even when model error may be

considered negligible, multiplicative inflation can reduce

the impact of sampling error that usually occurs when low-

rank estimations of the error covariancematrices are used.

In the presence of model error, multiplicative inflation can

also be used to increase the forecast ensemble spread as

a way to account for model error (Li et al. 2009; Miyoshi

2011). In this work, the multiplicative inflation factor dm is

assumed to be constant in space and time. An optimal

value of 1.125 has been determined based on tuning ex-

periments (Li et al. 2009).

2) ADDITIVE INFLATION

Additive inflation consists of adding different per-

turbations to each ensemble member. This method has

been found to produce a better representation of model

errors when compared with multiplicative inflation

(Whitaker and Hamill 2012; Li et al. 2009; Whitaker

et al. 2008). Ideally, the additive ensemble perturbations

should represent possible realizations of the model er-

ror. This is particularly difficult to achieve since model

error is usually unknown. Following Li et al. (2009), in

this work, additive perturbations are generated as dif-

ferences between the 6-h forecast produced with the

perfect model and with the imperfect model. Thus, the

perturbations are taken from true possible realizations

of model error. At each assimilation step, a set of 50

additive perturbations is randomly selected from a large

sample (over 5000) of model error realizations and

added to the ensemble members after the analysis and

before the model integration. The mean of the selected

additive perturbations is removed in order to preserve

the analysis ensemble mean (Li et al. 2009). The am-

plitude of these perturbations is scaled by a parameter

da that in this work is considered constant in space and

time. An optimal value of 1.25 has been determined

based on tuning experiments (Li et al. 2009).

3) BIAS CORRECTION

Bias correction provides a way to estimate the sys-

tematic component of model error within a data assim-

ilation cycle. Several techniques have been developed to

infer and remove the model bias (Dee and da Silva 1998;

Baek et al. 2006; Li et al. 2009; Greybush et al. 2012;

Danforth et al. 2007 among many others). In this work,

a bias correction technique, in which the bias is esti-

mated based on the analysis increment (Li et al. 2009), is

used following the equation below:
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qa5mbq
f 1 db(x

f 2 qf 2 xa) , (1)

where qa is the estimated model bias for the current

analysis cycle, q f is the bias estimated for the previous

analysis cycle, db is a scaling coefficient, andmb is a factor

(,1) that relaxes the bias toward 0. The estimated bias

in the previous assimilation cycle, q f , is subtracted from

each forecast ensemble member before assimilating the

observations. An optimal value of 0.1 for db has been

determined through tuning experiments; the parameter

mb has been set to 0.9 following the recommendations of

Li et al. (2009).

4) PARAMETER ESTIMATION

In this work, a state augmentation approach is used in

which the parameters to be estimated are included into

the state vector (Jazwinski 1970; Cornick et al. 2009).

Localization is not applied for the estimation of model

parameters because they are global parameters and,

therefore, their values can be correlated with model

state variables errors at any location (Fertig et al. 2007;

Ruiz et al. 2013b). The model parameters to be esti-

mated are initialized with random realizations from

aGaussian distribution withmean parameter values that

represent a priori physical estimates of their values, and

a standard deviation thath represents an a priori esti-

mate of the uncertainty associated with that parameter

(Aksoy et al. 2006a).

In some cases the values of estimated model param-

eters are subject to physical constraints that are inherent

to their definition or purpose (e.g., positive definite pa-

rameters). Ensemble Kalman filters assume that the

error distribution of the parameters is Gaussian so in

principle no constraint is assumed for the estimated

parameter values (Aksoy 2015). To prevent the esti-

mated parameters from taking unrealistic values, each

individual member of the parameter ensemble is ex-

amined after the data assimilation and if one of them is

outside the a priori defined range, it is replaced by

a random parameter value taken from a Gaussian dis-

tribution with mean equal to the parameter ensemble

mean and standard deviation equal to the ensemble

parameter spread. This procedure is repeated until all

the parameter ensemble members are within the a priori

defined range.

Persistence is assumed for the evolution of parameter

values between two assimilations of observations. Be-

cause of this, the parameter ensemble spread is system-

atically reduced during the data assimilation eventually

producing filter divergence for the parameters (Aksoy

2015; Ruiz et al. 2013b). In this work, the approach in-

troduced by Ruiz et al. (2013b) that provides an online

estimation of the parameter ensemble spread is used. The

impact of this approach upon the estimated parameters

and the analysis quality is discussed in section 3d.

d. Experimental design

In this work, an observing system simulation experi-

ment approach is used.A 6-month ‘‘nature’’ integration is

generated with the general circulation model. Observed

variables are assumed to be temperature, zonal and me-

ridional wind, specific moisture, and surface pressure.

They are taken every 6 h from the nature integration, by

adding aGaussian random error with standard deviations

of 1K for the temperature, 1m s21 for the wind compo-

nents, 1 g kg21 for the specific moisture, and 1hPa for the

surface pressure as in Li et al. (2009). The horizontal lo-

cation of the observations is chosen at each data assimi-

lation cycle using randomly generated longitudes and

latitudes with uniform distribution. This is used in order

to avoid effects associated with fixed inhomogeneous

networks that require more sophisticated schemes for the

treatment of inflation (Miyoshi 2011; Whitaker and

Hamill 2012). The number of observation locations in

each cycle is 1152 and is kept constant in time. At each

horizontal location temperature, horizontal wind com-

ponents and specific humidity observations are generated

in all the model levels.

For the data assimilation system experiments, an im-

perfect version of the SPEEDY model is used (unless

otherwise indicated) that is different from the version used

to generate the nature integration. The nature integration

of the SPEEDYused to produce the observations uses the

set of standard parameters of the model shown in Table 1,

which are referred to as nature parameters. The imperfect

version of the SPEEDY model uses another set of pa-

rameters, which are referred as imperfect parameters, and

are specified in Table 1. These parameters affect vertical

diffusion (TRSCHandTRVDI), large-scale condensation

(TRLSC and RHLSC), deep moist convection (TRCNV,

TABLE 1. Values of the parameters used in the imperfect version of

the model and in the nature integration.

Name Nature value Imperfect value

TRLSC 4.0 3.0

RHLSC 0.9 0.8

TRSHC 6.0 7.0

TRVDI 20.0 24.0

FWIND0 0.6 0.5

CDL 2.2 3 1023 2.4 3 1023

CDS 0.8 3 1023 0.7 3 1023

CHL 1.2 3 1023 1.15 3 1023

CHS 0.8 3 1023 0.75 3 1023

TRCNV 0.16 0.25

RHBL 0.9 0.8

ENTMAX 0.5 0.3
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RHBL, and ENTMAX), and surface exchange of mo-

mentum and heat for land (CDL andCHL) and sea (CDS

and CHS). When the imperfect version of the model is

used in a data assimilation cycle, the resulting analysis

error is more than 3 times greater than the one obtained

with the perfect model. The parameters of the deep moist

convection scheme are the only ones being estimated

(TRCNV, RHBL, and ENTMAX) in the parameter es-

timation experiments. The other parameters whose values

have been modified represent sources of model error that

cannot be directly accounted for the estimation of deep

moist convection parameters.

In this work, the error in the model state is quantified,

using the total RMSE defined as

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
(xa2 xt)TA21(xa2 xt)

r
, (2)

where xa is the analysis state vector, xt is the true state

vector,N is the number of state variables, andA is anN3
N diagonal matrix that normalizes the error by the

typical error magnitude for each variable. These typical

errors are the same as the ones used to generate the

observations.

The systematic component of the error is computed

using the total absolute mean error (AME), defined as

AME5
1

N
�
N

n51

A(n, n)21/2jhxa(n)2 xt(n)ij , (3)

where x(n) denotes the nth component of x, j j denotes
the absolute value, and h i denotes time averaging. Note

that to compute AME, first the time average of the error

or bias is computed, then its absolute value is taken and

finally the sum over different locations and different

variables normalized by their typical error magnitude is

conducted. Taking the absolute values avoids compen-

sation from biases coming from different regions or var-

iables. Both RMSE and AME are computed considering

the entire state vector or for a particular variable.

3. Results

a. Parameter estimation as a model error treatment
technique

Four experiments were conducted to evaluate the

performance of parameter estimation as a model error

treatment technique in comparison with multiplicative

and additive inflation. The experiments are (i) multi-

plicative inflation alone, (ii) multiplicative and additive

inflation, (iii) parameter estimation and multiplicative

inflation, and (iv) parameter estimation combined with

multiplicative and additive inflation. In the parameter

estimation experiments, the initial parameter ensemble

is generated randomly sampling parameter values from

a normal distribution. The mean of the normal distri-

bution is 0.5 for TRCNV, 0.8 for RHBL, and 0.3 for

ENTMAX, the standard deviation is the same for all the

parameters and equal to 6.1 3 1023. The chosen mean

values for the parameter estimation experiments are

farther from the nature parameter values than the values

used in the imperfect model. In all the experiments

shown in this work, time average quantities are com-

puted excluding the first 200 data assimilation cycles to

avoid contamination of the diagnostics with the spinup

of the filter. In what follows, the experiment that com-

bines multiplicative and additive inflation is used as

a reference for comparison and referred as the control

experiment.

The time evolution of the total analysis RMSE for the

above-mentioned experiments is shown in Fig. 1, the

average RMSE for each experiment is also provided.

The experiment with additive and multiplicative in-

flation and the experiment with multiplicative inflation

and parameter estimation both have a significant im-

provement of the analysis quality with respect to the

experiment with multiplicative inflation alone. When

parameter estimation is added to multiplicative and

additive inflation, there is a further important reduction

in the analysis RMSE.

The reason for the improvement produced by pa-

rameter estimation in the analysis RMSE may be traced

back to two possible explanations. One explanation is

that the spread of the parameters introduces more

spread into model state variables that produces a better

representation of the model state uncertainty. A second

explanation may be that parameter estimation produces

a convergence of the parameter ensemble mean values

toward optimal values correcting systematic model er-

rors and, therefore, improving the analysis quality. The

values of the time-averaged estimated parameters in the

parameter estimation experiment with multiplicative

and additive inflation are 0.50 for TRCNV, 0.77 for

RHBL, and 0.80 for ENTMAX, which differ from the

nature values (see Table 1).

To evaluate the impact of estimated parameter values

upon the analysis quality, a second set of two data as-

similation experiments were performed. One experi-

ment in which the convective scheme parameters are set

to the nature values (see Table 1) and a second experi-

ment, where the convective scheme parameters are set

to a time average of the estimated parameters obtained

in the parameter estimation experiment. Both experi-

ments use multiplicative and additive inflation. Figure 2

shows the evolution of the analysis RMSE for these two

experiments in comparison with the RMSE from the
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control experiment and the parameter estimation ex-

periment. The experiment that uses the nature convec-

tive scheme parameters has almost the same RMSE as

the control experiment (that uses an imperfect set of

convective scheme parameters). On the other hand, the

experiment with the time-averaged estimated parame-

ters leads to a 6.7% reduction in the RMSE with respect

to the experiment performed with the nature convective

scheme parameters and also with respect to the control

experiment. The optimal parameters in the imperfect

model are able to reduce the analysis RMSE with respect

to the nature parameters. These experiments show that

the correction of the systematic model error produced by

optimal parameters has an important impact in the anal-

ysis RMSE. This result also suggests that the optimization

of the convective scheme may be canceling out errors in

the model coming from other parameterizations with

imperfect parameters. Therefore, although the estimated

convective scheme parameters are not the nature values,

they minimize the total analysis RMSE.

The only difference between the experiment with

time-averaged estimated parameters and the parame-

ter estimation experiment is that in the parameter es-

timation experiment, the parameter values can change

in time as a consequence of the estimation process.

Figure 2 shows that the experiment with time-averaged

estimated parameters is as good as the parameter es-

timation experiment. This suggests that time fluctua-

tions in the estimated parameters are mostly associated

with noise in the estimated parameters and do not con-

tribute significantly to the improvement of the analysis

quality. The origin of these fluctuations are mostly asso-

ciated with sampling error and with time-dependent

projections of model error in the direction of model

sensitivity to the parameters [see Aksoy (2015) and Tong

andXue (2008) for further discussion on this issue and for

approaches to reduce the impact of sampling error upon

the estimated parameters].

The impact of the spread of the parameters produced

by parameter estimation on the analysis RMSE is exam-

ined by means of an experiment in which the convective

parameters are not estimated, but they are Gaussianly

distributed around its assumed fixedmean value that is set

to the imperfect model parameter values (see Table 1).

The spread of the parameters is the time average of the

parameter ensemble spread estimated in the parameter

estimation experiment for each individual parameter.

Figure 3a shows that the experiment with perturbed pa-

rameters has a similar analysis RMSE that the control

experiment. This shows that the perturbations introduced

in the parameters produce a negligible impact upon the

analysis quality and almost all of the improvement in the

FIG. 1. Total analysis RMSE as a function of time for the experiment with multiplicative

inflation alone (black dashed line), multiplicative and additive inflation (black solid line), pa-

rameter estimation with multiplicative inflation (gray dashed line), and parameter estimation

with multiplicative and additive inflation (gray solid line) experiments. The average RMSE for

each experiment is shown between brackets in the legend.

MAY 2015 RU I Z AND PUL IDO 1573



parameter estimation experiment comes from the update

of the parameter value.

The correction of systematic errors by online parame-

ter estimation appears to have a large impact in the

analysis RMSE. Two additional experiments explore the

impact of correction of systematic errors: one in which

a bias correction technique is applied and the other uses

a combination of bias correction and parameter estima-

tion. Both experiments use multiplicative and additive

inflation. The bias correction experiment gives a RMSE

smaller than the experiment that uses only multiplicative

and additive inflation (Fig. 4). The improvement pro-

duced by the bias correction in this case is close to the one

produced by the parameter estimation. Further im-

provement is obtained when bias correction and param-

eter estimation techniques are combined. As can be seen

in Fig. 4, the impact of estimating the convective scheme

parameters is smaller if a bias correction method is im-

plemented in the data assimilation cycle. Bias correction

can partially correct the systematic component of model

error, in particular the one associated with nonoptimal

model parameters, thus reducing the additional im-

provement produced by parameter estimation. Even

though, adding parameter estimation can improve the

analysis RMSE given by the bias correction method.

b. Impact of estimated parameters upon individual
variables

Figure 5 shows the vertical profile of the analysis AME

[Eq. (3)] for zonal andmeridional wind, temperature, and

specific humidity for the control, parameter estimation,

and bias correction experiments. The impact of parame-

ter estimation is stronger forU andVwind components at

mid- and upper levels and for temperature at upper

levels. This impact does not seem to be directly related to

the model sensitivity to the convective scheme parame-

ters. The sensitivity to these parameters is stronger for

temperature atmidlevels and for wind at lower and upper

levels as shown in Ruiz et al. (2013a). The bias correction

experiment reduces the systematic component of the

analysis error for all model variables, including specific

moisture, with respect to the control experiment.

As shown in Fig. 5, the analysis AME for specific

moisture is degraded in the parameter estimation ex-

periment with respect to the control experiment. This is

an unexpected result since low-level moisture is directly

associated with convection, so that an optimization of

convective scheme parameters was expected to improve

the representation of low-level moisture. One possible

explanation is that the optimal parameter values that are

different from the nature values are forcing the convec-

tive scheme to produce improvements in all model vari-

ables but specific moisture. In particular, the optimal

TRCNV parameter in the parameter estimation experi-

ment is larger than the nature value. This leads to a faster

adjustment time in the convective scheme. The estimated

optimal RHBL parameter in this experiment is smaller

than the nature value, relaxing low-level specificmoisture

to a lower value in the planetary boundary layer. The

combination of these two effects leads to an increase in

the strength of convection in the model, thus reducing

moisture and producing a dry bias. As a result, the spa-

tially averaged lowest-level moisture bias in the param-

eter estimation experiment is 20.47g kg21 while it is

20.43g kg21 in the control experiment. This shows how

convection and the hydrological cycle are affected through

FIG. 2. Total analysis RMSE as a function of time for the control experiment (black solid

line), parameter estimation (gray solid line), nature convective scheme parameters (black

dashed line), and time-averaged estimated convective scheme parameters (gray dashed line)

experiments.
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parameter estimation to partially correct other errors in

the model.

The degradation in low-levelmoisture in the parameter

estimation experiment, suggests that the parameter values

that improve low-level moisture forecasts are different

from those that improve wind and temperature forecasts.

To evaluate this hypothesis, we conducted an extreme

experiment in which the parameters are only being esti-

mated from specific moisture observations at low levels

(below 700hPa). All available observations are used for

the state variable assimilation as in the previous experi-

ments. Figure 5 shows that parameter estimation using

only specific moisture observations reduces the analysis

AME for this variable at low levels in which specific

moisture is observed. On the other hand, it degrades the

AME for all the other model variables including specific

moisture at upper levels. This shows that the estimated

parameters are sensitive to the observations used in the

optimization (Kang et al. 2011; Schirber et al. 2013). The

estimated parameters in this experiment repeatedly adopt

nonphysical values (not shown). The tendency of the

model parameters to drift away from the physically

meaningful range in this experiment also highlights the

need for further evaluation of parameter estimation

with real observations for which constraining the pa-

rameter to an expert-defined range would be essential

for the success of the technique.

When parameter estimation is used to correct model

error, the correction is done in a space that usually has

a few dimensions (three in this work which is the number

of the estimated parameters), then the correction in

different model variables is linked through the model

sensitivity to the parameters that are being estimated. This

can lead to the type of results discussed in this section in

which some variables are improved at the expenses of

a degradation in some other variable.

c. Impact of estimated parameters upon the
medium-range forecasts

An ensemble of 50 medium-range forecasts are gen-

erated to amaximum lead time of 10 days using the initial

conditions from the control, parameter estimation, bias

correction, and the combined parameter estimation and

bias correction data assimilation experiments. In the bias

correction experiment, the estimated bias in the analysis

cycle is also used to correct the model tendencies in the

forecast every 6h as inDanforth et al. (2007). This is done

in order to partially correct the model error, not only in

the initial condition, but also in the forecast. In the pa-

rameter estimation experiment, the estimated parameter

ensemble members (i.e., the analysis parameter ensem-

ble) corresponding to the forecast initialization time are

used to produce the forecast. In that way, the forecast

ensemble members include perturbations in the initial

conditions and in the model parameters.

Figure 6a shows the total RMSE of the ensemble mean

as a function of the forecast lead time. The relative dif-

ferences in the RMSE among the forecast experiments

FIG. 3. Total analysis RMSE as a function of time for the control (black solid line), parameter

estimation (gray solid line), and perturbed parameter (black dashed line) experiments.
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are basically the same as those found in the analysis

(section 3a). The combination of bias correction and

parameter estimation is the experiment that produces the

lowest forecast RMSE, followed by parameter estimation

without bias correction. For most variables, the relative

impact of parameter estimation grows with time, in-

dicating an improvement due to better initial conditions

(i.e., more accurate analysis), but also due to parameter

values that reduce model error during the forecast. In

these experiments, the improvement of the forecast

quality produced by parameter estimation with respect to

the control forecast quality is larger than the improve-

ment produced by the bias correction scheme. This shows

that, in these idealized experiments, even though the es-

timated parameters do not converge to the nature pa-

rameters, the estimated parameter values improve the

forecast up to 10 days of lead time (near the predictability

limit for synoptic-scale flow). The positive impact of pa-

rameter estimation in the forecasts is found in all model

variables, even for specific moisture (Fig. 6c). Specific

moisture forecasts are worse in the parameter estimation

experiments, for the shorter lead times (less than 24h),

but for longer lead times, parameter estimation experi-

ments produce a better representation of the moisture

field. One possible explanation for the lower moisture

RMSE at longer forecast ranges found for the parameter

estimation experiment is that the improvement in the

representation of other model variables, like the wind

field, produces a positive impact upon the quality of the

forecasted moisture field through a better representation

of the moisture advection.

d. Sensitivity of parameter estimation to initial
parameter ensemble mean and spread

In this work, two approaches for the determination of

the parameter ensemble spread are examined: the con-

ditional covariance inflation (CCI) approach (Aksoy

et al. 2006a), which keeps the spread of each estimated

parameter constant in time, and the estimated parame-

ter ensemble spread (EPES) approach (Ruiz et al.

2013b), which provides an online estimation of the pa-

rameter ensemble spread. The EPES approach is the

one used in the experiments shown in previous sections.

Both approaches use a time-dependent inflation co-

efficient for the parameter ensemble spread that is in-

dependent of the inflation coefficient used for the model

state variables. The two approaches are compared in the

perfect model scenario in Ruiz et al. (2013b). In that

work, it is shown that the EPES approach allows an

online estimation of the optimal value for the parameter

FIG. 4. Total analysis RMSE as a function of time for the control (black solid line), parameter

estimation (gray solid line), bias correction (black dashed line), and combination of parameter

estimation with bias correction (gray dashed line) experiments.
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ensemble spread based on the information provided by

the structure of the analysis error covariance matrix. In

the current work, the comparison is carried out in the

imperfect model scenario.

The dependence of the initial value of the parameter

ensemble spread in the analysis RMSE is evaluated in an

experiment that uses the multiplicative and additive

inflation. For the multiplicative parameter inflation, the

EPES and CCI approaches are used. Eight experiments

with different initial parameter ensemble spread were

conducted. Figure 7a shows the time-averaged total

RMSE of the analysis as a function of the initial pa-

rameter ensemble spread. The CCI approach shows

sensitivity to the initial parameter ensemble spread

while the EPES approach is almost insensitive to the

initial parameter ensemble spread. Moreover, the anal-

ysis RMSE obtained with EPES in this experiment is in

general as low as theminimumRMSE obtainedwith CCI

approach. Figures 7b and 7c also show the time-averaged

estimated parameters as a function of the initial param-

eter ensemble spread. In the CCI approach, estimated

parameter values change as a function of the parameter

ensemble spread, while in the EPES approach their es-

timated values are much less sensitive to the initial pa-

rameter ensemble spread. Changes in the estimated

parameter values may explain the impact that the initial

parameter ensemble spread is producing upon the total

analysis RMSE for the CCI approach. In the CCI ap-

proach, when the parameter ensemble spread is too

small, then optimal parameters are not well estimated (or

the convergence is too slow). Furthermore, when the

parameter ensemble spread is too large, then parameter

values in some ensemble members might be too far from

the optimal value, thus degrading the parameter esti-

mation and the performance of some of the ensemble

members.

We conclude from these experiments that one impor-

tant advantage of the EPES approach is that the pa-

rameter ensemble spread does not need to be tuned. The

tuning of the parameter ensemble spread is computa-

tionally expensive, particularly if several parameters are

estimated, because the optimal parameter ensemble

spreadmight be (as in the present case) different for each

parameter (Zhang et al. 2012). The inflation of the pa-

rameter ensemble spread in the EPES approach is di-

rectly related to the spread in the state variable ensemble.

In these experiments, EPES outperforms CCI for any

initial parameter spread. If only multiplicative inflation is

used, CCI gives a slightly smaller RMSE than EPES for

the optimal initial spread value (not shown).

To evaluate sensitivity of the estimated parameter

values to the initial parameter ensemble mean, a set of

four experiments which differ in the initial parameter

ensemble mean were conducted. The initial parameter

FIG. 5. Absolute mean error (AME) as a function of the vertical model level for (a) theU component of the wind, (b) theV component

of the wind, (c) temperature, and (d) specific moisture and for the control (black solid line), parameter estimation (gray solid line), bias

correction (black dashed line), and parameter estimation using only low-level moisture observations (gray dashed line) experiments.
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ensemble mean is the same for the three convective

scheme parameters and is set as 0.2, 0.4, 0.6, and 0.8 for

each experiment. Figure 8 shows that the estimated

parameters in these experiments converge to values that

are almost independent of the initial parameter en-

semble mean values. We conclude that the estimated

parameter values are robust in the sense that they are

practically independent of the initial parameter ensemble

mean. The instantaneous value of the estimated param-

eters shows high-frequency temporal variability, and

differs from one experiment to the other. This behavior is

likely produced by sampling error that is explained by the

limited size ensemble used in these experiments as well as

because of localization is not used for the parameters

(Aksoy 2015). Parameters that produce a high impact

upon themodel skill (e.g., RHBL) are less sensitive to the

effect of sampling noise.

Figure 8 shows that the convergence time depends on

the initial parameter value. It can be as long as 300 as-

similation cycles. The convergence time of the parameter

depends also on the initial parameter ensemble spread;

a larger initial parameter ensemble spread can speed up

convergence particularly in the cases where the initial

parameter value is far from the optimal value. A large

convergence time can be a serious limitation for param-

eter estimation in applications like convective-scale data

assimilation in which in order to be useful, the estimated

parameters have to converge in a few assimilation cycles.

In this case, the impact of techniques like running in place

upon parameter estimation should be explored (Yang

et al. 2012).

4. Conclusions

In this work, a parameter estimation technique based

on the LETKF assimilation scheme is evaluated in an

imperfect model scenario as a way of accounting for

model error within ensemble-based data assimilation. It

is found that parameter estimation as a model error

treatment technique can improve the analysis via the

optimization of the model parameters; on the other

hand, the perturbation of the model parameters alone

does not produce, in this case, a significant impact on the

analysis quality.

The combination of parameter estimation with other

model error treatment techniques shows that parameter

estimation can produce further improvement in the

analysis and forecast quality. In particular, the combi-

nation of multiplicative inflation and additive inflation

with parameter estimation produces better results than

considering either technique alone, because of the par-

tial correction of model error introduced by the opti-

mized parameter values. The improvement produced by

parameter estimation is similar to the one produced by

FIG. 6. RMSE of the ensemblemean as a function of forecast lead time and for the control (black solid line), parameter estimation (gray

solid line), bias correction (black dashed line), and the combination of parameter estimation and bias correction (gray dashed line)

experiments: (a) total RMSE, (b) U and V RMSE, and (c) q RMSE.
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a bias correction technique in the experiments with syn-

thetic observations. The advantage in the case of bias

correction is that, it introduces a model error correction

in a space of the same size as themodel state and thus can

provide a more consistent correction across different

variables in the model. Moreover, several sources of

model error can be considered simultaneously with this

technique. On the other hand, one potential advantage of

parameter estimation is that it can introduce faster time-

varying corrections in the time scale associated with the

parameterized process. In this work, the correction of

model error is performed in a low-dimensional space,

a few global parameters are estimated, which can in-

troduce inconsistencies in the impact among different

model variables. Because of this low dimensionality only

a portion of the model error can be corrected with pa-

rameter estimation and the estimation can be seriously

affected by the remaining sources of model error. This

supports the idea that parameter estimation and bias

correction can be combined in order to complement their

strengths and mitigate their limitations. In the experi-

ments performed in this work, the combination of pa-

rameter estimation and bias correction produces the best

analysis. The results obtained in this work suggest that in

realistic applications online parameter estimation can be

used as a complement to other model error treatment

techniques for expert-selected model parameters.

The experiments conducted in this work suggest that

the improvement in the analysis RMSE produced by

parameter estimation is mainly explained by the opti-

mization of the value of the estimated parameters. The

model spread produced by the parameter ensemble

perturbations does not have a significant impact upon

the analysis. This might be because, in this work, other

techniques have also been used in order to improve the

ensemble spread for the state variables, thus reducing

the impact of the additional spread introduced by the

perturbed parameters. Parameter perturbations have

also been optimized to produce the best results for pa-

rameter estimation but they might be too small to pro-

duce a significant impact upon the analysis quality when

the parameters are not being estimated and are far from

their optimal value.

Consistent with the previously discussed results, we

found an important positive impact of parameter esti-

mation in medium-range forecasts. Parameter estima-

tion can improve the RMSE of medium-range forecasts

found with the other model error treatment techniques

(i.e., additive inflation and bias correction). The im-

provement in the RMSE is found in all variables except

specific moisture, which is degraded in short-term fore-

casts. However, parameter estimation gives the lowest

RMSE for this variable for forecasts with lead times

longer than one day. As for the analysis error, the lowest

FIG. 7. (a) Time-averaged analysis total RMSE as a function of the initial parameter ensemble spread for the CCI approach (gray line

with squares) and the EPES approach (black line with circles). (b) As in (a), but for the time-averaged estimated TRCNV parameter.

(c) As in (b), but for the ENTMAX estimated parameter.
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forecast error is achieved by the combination of pa-

rameter estimation and bias correction approaches. The

lowest forecast error is also achieved, as the lowest

analysis error, in the experiment that combines param-

eter estimation and bias correction techniques.

In the presence of multiple sources of model error, the

estimated optimal parameters may differ from the opti-

mal parameters under the assumption of perfect model,

say nature or true parameters. Some of the error sources

not directly associated with the process represented with

the scheme of the parameters to be estimated affect the

optimal value of the estimated parameters. This is mainly

because model error from different sources may project

onto the direction of the model sensitivity to the param-

eters. In the experiments discussed in this work, the

‘‘true’’ parameter values produce essentially the same

analysis RMSE as the imperfect model. On the other

hand, the estimated parameters using data assimilation

produce a large improvement in the analysis RMSE. This

shows that the online estimation of parameters in a data

assimilation system can improve the analysis, subject to

the parameter values are constrained to an expert-defined

range, compared to a system with parameters that are

very well offline tuned for a specific situation from ob-

servations. The compensation of errors that the parame-

ter optimization produces in an imperfect model scenario

may be at the expenses of a worse representation of the

process directly associated with the parameter. If the

model imperfection is strong, then this error compensa-

tion effect can produce unrealistic values in the estimated

parameters. To prevent unrealistic parameter values that

degrade the forecasts, the parametersmust be constrained

to an expert-defined range in the data assimilation system.

Preliminary experiments in a scenario with more realistic

sources of model error, using NCEP–NCAR reanalysis as

observations, suggest that the analysis quality may be also

improved using parameter estimation. Similar to the re-

sults found in this work, the parameters converge to

a different value of the default model parameter values

for this preliminary experiment with more realistic sour-

ces of model error. The detailed results of these experi-

ments will be reported in a follow-up work. Experiments

of parameter estimation with real observations and state-

of-the-art models have been conducted in Schirber et al.

(2013). They found that parameter estimation can im-

prove the short-range forecast or even the model clima-

tology, but that, as in this work, the results might be

dependent on the available observations, on the model

sensitivity to the parameter, on the magnitude of model

error, and on the errors in the observation operator.

It is worth mentioning that parameter estimation is not

a way formodel improvement, this ultimate goal can only

be reached by the improvement of our understanding of

the physical processes and to its application to the de-

velopment of more realistic parameterizations of the

unresolved-scale processes (see, e.g., Jakob 2010). Data

assimilation schemes in this context can provide an effi-

cient way to estimate the optimal model parameters un-

der theminimumRMSE requirement and so theymay be

a useful tool to speed up the evaluation and optimization

of somemodel parameterizations under an ever changing

model scenario, but the improvement that this technique

can produce is strongly constrained by the underlying

assumptions made in the design of the parameterization.

FIG. 8. Time evolution of the parameter ensemble mean for the experiments with an initial

parameter ensemble mean of 0.2 (black solid line), 0.4 (dark gray solid line), 0.6 (gray solid

line), and 0.8 (black dashed line) and for (a) TRCNV, (b) RHBL, and (c) ENTMAX.

1580 MONTHLY WEATHER REV IEW VOLUME 143



Acknowledgments. This work was partially supported

by University of Buenos Aires Grant UBACYT-

20020100300089; and ANPCyT Grants PICT 2010N1986,

PICT 2011N2452, and PIP 112-20120100414CO. The au-

thors thank Takemasa Miyoshi and Eugenia Kalnay for

helpful discussions and also for providing the SPEEDY-

LETKF code used in the experiments.

The comments provided by three anonymous re-

viewers were helpful in improving the analysis of the

results and the structure of the paper. The authors are

also thankful to the editor, Altug Aksoy, for providing

fruitful comments.

REFERENCES

Aksoy, A., 2015: Parameter estimation. Encyclopedia of Atmo-

spheric Sciences, 2nd ed. G. R. North, J. Pyle, and F. Zhang,

Eds., Vol. 4, Academic Press, 181–186.

——, F. Zhang, and J. Nielsen-Gammon, 2006a: Ensemble-based si-

multaneous state and parameter estimation in a two-dimensional

sea-breeze model.Mon. Wea. Rev., 134, 2951–2969, doi:10.1175/

MWR3224.1.

——, ——, and ——, 2006b: Ensemble-based simultaneous state

and parameter estimation with MM5. Geophys. Res. Lett., 33,

L12801, doi:10.1029/2006GL026186.

Anderson, J. L., 2001: An ensemble adjustment Kalman filter for

data assimilation.Mon. Wea. Rev., 129, 2884–2903, doi:10.1175/

1520-0493(2001)129,2884:AEAKFF.2.0.CO;2.

——, 2009: Spatially and temporally varying adaptive covariance

inflation for ensemble filters. Tellus, 61A, 72–83, doi:10.1111/

j.1600-0870.2008.00361.x.

Annan, J. D., 2005: Parameter estimation using chaotic time series.

Tellus, 57A, 709–714, doi:10.1111/j.1600-0870.2005.00143.x.

——, J. C. Hargreaves, N. R. Edwards, and R. Marsh, 2005: Pa-

rameter estimation in an intermediate complexity earth sys-

temmodel using an ensemble Kalman filter.OceanModell., 8,

135–154, doi:10.1016/j.ocemod.2003.12.004.

Baek, S.-J., B. R. Hunt, E. Kalnay, E. Ott, and I. Szunyogh, 2006:

Local ensemble Kalman filtering in the presence of model bias.

Tellus, 58A, 293–306, doi:10.1111/j.1600-0870.2006.00178.x.
Bellsky, T., J. Berwald, and L.Mitchell, 2014: Nonglobal parameter

estimation using local ensemble Kalman filtering. Mon. Wea.

Rev., 142, 2150–2164, doi:10.1175/MWR-D-13-00200.1.

Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic repre-

sentation of model uncertainties in the ECMWF ensemble

prediction system.Quart. J. Roy.Meteor. Soc., 125, 2887–2908,

doi:10.1002/qj.49712556006.

Cornick, M., B. Hunt, E. Ott, H. Kurtuldu, and M. F. Schatz, 2009:

State and parameter estimation of spatiotemporally chaotic

systems illustrated by an application to Rayleigh–Bénard
convection. Chaos, 19, 013108, doi:10.1063/1.3072780.

Danforth, C., E. Kalnay, and T. Miyoshi, 2007: Estimating and

correcting global weather model error. Mon. Wea. Rev., 135,

281–299, doi:10.1175/MWR3289.1.

Dee, D., and A. da Silva, 1998: Data assimilation in the presence of

forecast bias.Quart. J. Roy.Meteor. Soc., 124, 269–295, doi:10.1002/

qj.49712454512.

Fertig, E., B. Hunt, E. Ott, and I. Szunyogh, 2007: Assimilating

non-local observations with a local ensemble Kalman filter.

Tellus, 59A, 719–730, doi:10.1111/j.1600-0870.2007.00260.x.

Greybush, S. J., E. Kalnay, T. Miyoshi, K. Ide, and B. R. Hunt,

2011: Balance and ensemble Kalman filter localization tech-

niques. Mon. Wea. Rev., 139, 511–522, doi:10.1175/

2010MWR3328.1.

——, R. J. Wilson, R. N. Hoffman, M. J. Hoffman, T. Miyoshi,

K. Ide, T. McConnochie, and E. Kalnay, 2012: Ensemble

Kalman filter data assimilation of Thermal Emission Spec-

trometer temperature retrievals into a Mars GCM. J. Geophys.

Res., 117, E11008, doi:10.1029/2012JE004097.

Hamill, T., J. S. Whitaker, and C. Snyder, 2001: Distance-

dependent filtering of background-error covariance estimates

in an ensembleKalman filter.Mon.Wea. Rev., 129, 2776–2790,

doi:10.1175/1520-0493(2001)129,2776:DDFOBE.2.0.CO;2.

Houtekamer, P. L., H. L. Mitchell, and X. Deng, 2009: Model error

representation in an operational ensemble Kalman filter.Mon.

Wea. Rev., 137, 2126–2143, doi:10.1175/2008MWR2737.1.

Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data

assimilation for spatiotemporal chaos: A local ensemble

transform Kalman filter. Physica D, 77, 437–471, doi:10.1016/

j.physd.2006.11.008.

Jakob, C., 2010: Accelerating progress in global atmospheric model

development through improved parameterizations.Bull. Amer.

Meteor. Soc., 91, 869–875, doi:10.1175/2009BAMS2898.1.

Jazwinski, A. H., 1970: Stochastic and Filtering Theory. Mathe-

matics in Sciences and Engineering Series, Vol. 64, Academic

Press, 376 pp.

Jung, Y., M. Xue, and G. Zhang, 2010: Simultaneous estimation of

microphysical parameters and the atmospheric state using

simulated polarimetric radar data and an ensemble Kalman

filter in the presence of an observation operator error. Mon.

Wea. Rev., 138, 539–562, doi:10.1175/2009MWR2748.1.

Kang, J. S., E. Kalnay, J. Liu, I. Fung, T. Miyoshi, and K. Ide, 2011:

‘‘Variable localization’’ in an ensemble Kalman filter: Appli-

cation to the carbon cycle data assimilation. J. Geophys. Res.,

116, D09110, doi:10.1029/2010JD014673.

Kondrashov, D., C. Sun, and M. Ghil, 2008: Data assimilation for

a coupledocean–atmospheremodel. Part II: Parameter estimation.

Mon. Wea. Rev., 136, 5062–5076, doi:10.1175/2008MWR2544.1.

Koyama,H., andW.Watanabe, 2010: Reducing forecast errors due

tomodel imperfections using ensembleKalman filtering.Mon.

Wea. Rev., 138, 3316–3332, doi:10.1175/2010MWR3067.1.

Li, H., E. Kalnay, T. Miyoshi, and C. M. Danforth, 2009: Ac-

counting for model errors in ensemble data assimilation.Mon.

Wea. Rev., 137, 3407–3419, doi:10.1175/2009MWR2766.1.

Meng, Z., and F. Zhang, 2007: Test of an ensemble Kalman filter

for mesoscale and regional-scale data assimilation. Part II:

Imperfect model experiments. Mon. Wea. Rev., 135, 1403–

1423, doi:10.1175/MWR3352.1.

Miyoshi, T., 2005: Ensemble Kalman filter experiments with

a primitive-equation global model. Ph.D. thesis, University of

Maryland, College Park, 197 pp.

——, 2011: TheGaussian approach to adaptive covariance inflation

and its implementation with the local ensemble transform

Kalman filter. Mon. Wea. Rev., 139, 1519–1535, doi:10.1175/

2010MWR3570.1.

——, and S. Yamane, 2007: Local ensemble transform Kalman

filtering with an AGCM at a T159/L48 resolution. Mon. Wea.

Rev., 135, 3841–3861, doi:10.1175/2007MWR1873.1.

——, ——, and T. Enomoto, 2007: Localizing the error covariance

by physical distances within a local ensemble transformKalman

filter (LETKF). SOLA, 3, 89–92, doi:10.2151/sola.2007-023.
Molteni, F., 2003: Atmospheric simulations using a GCM with

simplified physical parametrizations. I: Model climatology and

MAY 2015 RU I Z AND PUL IDO 1581

http://dx.doi.org/10.1175/MWR3224.1
http://dx.doi.org/10.1175/MWR3224.1
http://dx.doi.org/10.1029/2006GL026186
http://dx.doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
http://dx.doi.org/10.1111/j.1600-0870.2008.00361.x
http://dx.doi.org/10.1111/j.1600-0870.2008.00361.x
http://dx.doi.org/10.1111/j.1600-0870.2005.00143.x
http://dx.doi.org/10.1016/j.ocemod.2003.12.004
http://dx.doi.org/10.1111/j.1600-0870.2006.00178.x
http://dx.doi.org/10.1175/MWR-D-13-00200.1
http://dx.doi.org/10.1002/qj.49712556006
http://dx.doi.org/10.1063/1.3072780
http://dx.doi.org/10.1175/MWR3289.1
http://dx.doi.org/10.1002/qj.49712454512
http://dx.doi.org/10.1002/qj.49712454512
http://dx.doi.org/10.1111/j.1600-0870.2007.00260.x
http://dx.doi.org/10.1175/2010MWR3328.1
http://dx.doi.org/10.1175/2010MWR3328.1
http://dx.doi.org/10.1029/2012JE004097
http://dx.doi.org/10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2
http://dx.doi.org/10.1175/2008MWR2737.1
http://dx.doi.org/10.1016/j.physd.2006.11.008
http://dx.doi.org/10.1016/j.physd.2006.11.008
http://dx.doi.org/10.1175/2009BAMS2898.1
http://dx.doi.org/10.1175/2009MWR2748.1
http://dx.doi.org/10.1029/2010JD014673
http://dx.doi.org/10.1175/2008MWR2544.1
http://dx.doi.org/10.1175/2010MWR3067.1
http://dx.doi.org/10.1175/2009MWR2766.1
http://dx.doi.org/10.1175/MWR3352.1
http://dx.doi.org/10.1175/2010MWR3570.1
http://dx.doi.org/10.1175/2010MWR3570.1
http://dx.doi.org/10.1175/2007MWR1873.1
http://dx.doi.org/10.2151/sola.2007-023


variability in multi-decadal experiments. Climate Dyn., 20,

175–191, doi:10.1007/s00382-002-0268-2.

Pulido, M., and J. Thuburn, 2006: Gravity wave drag estimation

from global analyses using variational data assimlation prin-

ciples. Part II: Case study. Quart. J. Roy. Meteor. Soc., 132,

1527–1543, doi:10.1256/qj.05.43.

Ruiz, J., M. Pulido, and T. Miyoshi, 2013a: Estimating model pa-

rameters with ensemble-based data assimilation: A review.

J. Meteor. Soc. Japan, 91, 79–99, doi:10.2151/jmsj.2013-201.

——, ——, and ——, 2013b: Estimating model parameters with

ensemble-based data assimilation: Parameter covariance

treatment. J. Meteor. Soc. Japan, 91, 453–469, doi:10.2151/
jmsj.2013-403.

Schirber, S., D. Klocke, R. Pincus, J. Quaas, and J. L. Anderson,

2013: Parameter estimation using data assimilation in an at-

mospheric general circulation model: From a perfect towards

the real world. J. Adv. Model. Earth Syst., 5, 58–70, doi:10.1029/

2012MS000167.

Shutts, G., 2005: A kinetic energy backscatter algorithm for use in

ensemble prediction systems.Quart. J. Roy. Meteor. Soc., 131,

3079–3102, doi:10.1256/qj.04.106.

Stainforth, D. A., and Coauthors, 2005: Uncertainty in predictions

of the climate response to rising levels of greenhouse gases.

Nature, 433, 403–406, doi:10.1038/nature03301.

Tong, M., and M. Xue, 2008: Simultaneous estimation of micro-

physical parameters and atmospheric state with simulated ra-

dar data and ensemble square root Kalman filter. Part II:

Parameter estimation experiments.Mon.Wea. Rev., 136, 1649–

1668, doi:10.1175/2007MWR2071.1.

Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to

account for system errors in ensemble data assimilation.Mon.

Wea. Rev., 140, 3078–3089, doi:10.1175/MWR-D-11-00276.1.

——, ——, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data

assimilation with the NCEP global forecasting system. Mon.

Wea. Rev., 136, 463–482, doi:10.1175/2007MWR2018.1.

Wu, X., S. Zhang, Z. Liu, A. Rosati, T. L. Delworth, and Y. Liu,

2012: Impact of geographic dependent parameter optimiza-

tion on climate estimation and prediction: Simulation with an

intermediate coupled model.Mon.Wea. Rev., 140, 3956–3971,

doi:10.1175/MWR-D-11-00298.1.

Yang, S.-C., E. Kalnay, andT.Miyoshi, 2012: ImprovingEnKF spin

up for typhoon assimilation and prediction. Wea. Forecasting,

27, 878–897, doi:10.1175/WAF-D-11-00153.1.

Zhang, S., Z. Liu, A. Rosati, and T. Delworth, 2012: A study of

enhancive parameter correction with coupled data assimilation

for climate estimation and prediction using a simple coupled

model. Tellus, 64A, 10963, doi:10.3402/tellusa.v64i0.10963.

1582 MONTHLY WEATHER REV IEW VOLUME 143

http://dx.doi.org/10.1007/s00382-002-0268-2
http://dx.doi.org/10.1256/qj.05.43
http://dx.doi.org/10.2151/jmsj.2013-201
http://dx.doi.org/10.2151/jmsj.2013-403
http://dx.doi.org/10.2151/jmsj.2013-403
http://dx.doi.org/10.1029/2012MS000167
http://dx.doi.org/10.1029/2012MS000167
http://dx.doi.org/10.1256/qj.04.106
http://dx.doi.org/10.1038/nature03301
http://dx.doi.org/10.1175/2007MWR2071.1
http://dx.doi.org/10.1175/MWR-D-11-00276.1
http://dx.doi.org/10.1175/2007MWR2018.1
http://dx.doi.org/10.1175/MWR-D-11-00298.1
http://dx.doi.org/10.1175/WAF-D-11-00153.1
http://dx.doi.org/10.3402/tellusa.v64i0.10963

